FAULT DIAGNOSIS METHOD OF WIND TURBINE BEARING BASED ON AM AND CNN MULTI-LEVEL FEATURE FUSION

Wang Jinhua, Han Jinyu, Cao Jie, Wang Yali

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (5) : 51-61.

PDF(4624 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(4624 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (5) : 51-61. DOI: 10.19912/j.0254-0096.tynxb.2023-0081

FAULT DIAGNOSIS METHOD OF WIND TURBINE BEARING BASED ON AM AND CNN MULTI-LEVEL FEATURE FUSION

  • Wang Jinhua1-3, Han Jinyu1, Cao Jie1,4, Wang Yali1
Author information +
History +

Abstract

In this paper, we proposed a attention mechanism multi-level feature fusion convolutional neural network(A2ML2F-CNN) fault diagnosis method. The method takes the original current and vibration signals as inputs, firstly uses the attention mechanism convolutional neural network (AMCNN) module to extract the data signal features separately, and perform a first-level feature fusion connection. On this basis, the attention mechanism one-dimensional convolutional neural network (AM1DCNN) and the two-dimensional convolutional neural network (2DCNN) are used to extract relevant information, and perform a secondary feature fusion, to solves the problem of insufficient fault information of single-sensor data and the difficulty of extracting complementary features. Finally, the fully connected layer and the Softmax layer are used to classify and the diagnostic results are obtained. In order to verify the fault diagnosis effect of the method proposed in this paper, the Paderborn data set is used for experimental verification, and its diagnosis effect is compared with CNN, LSTM, SVM. The results showed that the diagnostic accuracy of the method in this paper increased by 1.8, 3.2 and 4.8 percentage points respectively compared to the above methods, which shows the effectiveness of the method in this paper.

Key words

wind turbines / fault diagnosis / feature fusion / attention mechanism / convolutional neural network(CNN) / wind turbine bearings

Cite this article

Download Citations
Wang Jinhua, Han Jinyu, Cao Jie, Wang Yali. FAULT DIAGNOSIS METHOD OF WIND TURBINE BEARING BASED ON AM AND CNN MULTI-LEVEL FEATURE FUSION[J]. Acta Energiae Solaris Sinica. 2024, 45(5): 51-61 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0081

References

[1] 谷晓娇, 陈长征. 基于VMD和QPSO-SR的风电机组轴承故障提取方法[J]. 太阳能学报, 2019, 40(10): 2946-2952.
GU X J, CHEN C Z.Fault extraction method of wind turbine bearing based on vmd and QPSO-SR[J]. Acta energiae solaris sinica, 2019, 40(10): 2946-2952.
[2] 王妮妮, 马萍, 张宏立, 等. 基于多尺度深度卷积网络特征融合的滚动轴承故障诊断[J]. 太阳能学报, 2022, 43(4): 351-358.
WANG N N, MA P, ZHANG H L, et al.Fault diagnosis of rolling bearing based on feature fusion of multi-scale deep convolutional network[J]. Acta energiae solaris sinica, 2022, 43(4): 351-358.
[3] 孟良, 苏元浩, 许同乐, 等. 并行卷积神经网络的风电机组故障诊断方法[J]. 太阳能学报, 2023, 44(5): 449-456.
MENG L, SU Y H, XU T L, et al.Wind turbine fault diagnosis method based on parallel convolutional neural network[J]. Acta energiae solaris sinica, 2023, 44(5): 449-456.
[4] 王进花, 胡佳伟, 曹洁, 等. 基于自适应变分模态分解和集成极限学习机的滚动轴承多故障诊断[J]. 吉林大学学报(工学版), 2022, 52(2): 318-328.
WANG J H, HU J W, CAO J, et al.Multi-fault diagnosis of rolling bearing based on adaptive variational modal decomposition and integrated extreme learning machine[J]. Journal of Jilin University (engineering and technology edition), 2022, 52(2): 318-328.
[5] LECUN Y, BENGIO Y, HINTON G.Deep learning[J]. Nature, 2015, 521(7553): 436-444.
[6] CHEN Z Y, MAURICIO A, LI W H, et al.A deep learning method for bearing fault diagnosis based on cyclic spectral coherence and convolutional neural networks[J]. Mechanical systems and signal processing, 2020, 140: 106683.
[7] GUO Q W, LI Y B, SONG Y, et al.Intelligent fault diagnosis method based on full 1-D convolutional generative adversarial network[J]. IEEE transactions on industrial informatics, 2020, 16(3): 2044-2053.
[8] ZHANG Y, LI C B, WANG R, et al.A novel fault diagnosis method based on multi-level information fusion and hierarchical adaptive convolutional neural networks for centrifugal blowers[J]. Measurement, 2021, 185: 109970.
[9] WANG D C, GUO Q W, SONG Y, et al.Application of multiscale learning neural network based on CNN in bearing fault diagnosis[J]. Journal of signal processing systems, 2019, 91(10): 1205-1217.
[10] JIANG G Q, HE H B, YAN J, et al.Multiscale convolutional neural networks for fault diagnosis of wind turbine gearbox[J]. IEEE transactions on industrial electronics, 2019, 66(4): 3196-3207.
[11] MANJURUL ISLAM M M, KIM J M. Automated bearing fault diagnosis scheme using 2D representation of wavelet packet transform and deep convolutional neural network[J]. Computers in industry, 2019, 106(C): 142-153.
[12] WANG F, LIU R N, HU Q H, et al.Cascade convolutional neural network with progressive optimization for motor fault diagnosis under nonstationary conditions[J]. IEEE transactions on industrial informatics, 2021, 17(4): 2511-2521.
[13] SHI J C, YI J Y, REN Y, et al.Fault diagnosis in a hydraulic directional valve using a two-stage multi-sensor information fusion[J]. Measurement, 2021, 179: 109460.
[14] WANG H Q, LI S, SONG L Y, et al.An enhanced intelligent diagnosis method based on multi-sensor image fusion via improved deep learning network[J]. IEEE transactions on instrumentation and measurement, 2020, 69(6): 2648-2657.
[15] LI S, WANG H Q, SONG L Y, et al.An adaptive data fusion strategy for fault diagnosis based on the convolutional neural network[J]. Measurement, 2020, 165: 108122.
[16] SHAO S Y, YAN R Q, LU Y D, et al.DCNN-based multi-signal induction motor fault diagnosis[J]. IEEE transactions on instrumentation and measurement, 2020, 69(6): 2658-2669.
[17] WANG H Q, LI S, SONG L Y, et al.A novel convolutional neural network based fault recognition method via image fusion of multi-vibration-signals[J]. Computers in industry, 2019, 105(C): 182-190.
[18] XIA M, LI T, XU L, et al.Fault diagnosis for rotating machinery using multiple sensors and convolutional neural networks[J]. IEEE/ASME transactions on mechatronics, 2018, 23(1): 101-110.
[19] MA M, SUN C, CHEN X F.Deep coupling autoencoder for fault diagnosis with multimodal sensory data[J]. IEEE transactions on industrial informatics, 2018, 14(3): 1137-1145.
[20] JIAO J Y, ZHAO M, LIN J, et al.Deep coupled dense convolutional network with complementary data for intelligent fault diagnosis[J]. IEEE transactions on industrial electronics, 2019, 66(12): 9858-9867.
[21] 杨波. 基于振动与电流信号的转子系统载荷识别方法[D]. 太原: 太原理工大学, 2019.
YANG B.Load identification methods of rotor system based on vibration and current signal[D]. Taiyuan: Taiyuan University of Technology, 2019.
[22] YE Z A, YU J B.Multi-level features fusion network-based feature learning for machinery fault diagnosis[J]. Applied soft computing, 2022, 122: 108900.
[23] DONG X H, QIN Y, GAO Y H, et al.Attention-based multi-level feature fusion for object detection in remote sensing images[J]. Remote sensing, 2022, 14(15): 3735.
[24] 王屹立, 朱才朝, 朱永超. 多信号融合的风电齿轮箱异常状态检测[J]. 太阳能学报, 2021, 42(5): 380-386.
WANG Y L, ZHU C C, ZHU Y C.Anomaly detection of wind turbine gearbox based on multi-signal fusion[J]. Acta energiae solaris sinica, 2021, 42(5): 380-386.
[25] 李广帅, 苏娟, 李义红. 基于改进Faster R-CNN的SAR图像飞机检测算法[J]. 北京航空航天大学学报, 2021, 47(1): 159-168.
LI G S, SU J, LI Y H.An aircraft detection algorithm in SAR image based on improved Faster R-CNN[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(1): 159-168.
[26] 曹宇鹏, 罗林, 王乔, 等. 基于卷积深度网络的高压真空断路器机械故障诊断方法[J]. 电力系统保护与控制, 2021, 49(3): 39-47.
CAO Y P, LUO L, WANG Q, et al.Fault diagnosis of high-voltage vacuum circuit breaker with a convolutional deep network[J]. Power system protection and control, 2021, 49(3): 39-47.
[27] WANG D C, LI Y B, JIA L, et al.Novel Three-Stage Feature Fusion Method of Multimodal Data for Bearing Fault Diagnosis[J]. IEEE transactions on instrumentation and measurement, 2021,70: 1-10.
[28] WANG H, LIU Z L, PENG D D, et al.Understanding and learning discriminant features based on multiattention 1D CNN for wheelset bearing fault diagnosis[J]. IEEE transactions on industrial informatics, 2020, 16(9): 5735-5745.
[29] LESSMEIER C, KIMOTHO J, ZIMMER D, et al.Condition monitoring of bearing damage in electromechanical drive systems by using motor current signals of electric motors: a benchmark data set for data-driven classification[C]//European Conference of the Prognostics and Health Management Society. Bilbao, Spain, 2016.
PDF(4624 KB)

Accesses

Citation

Detail

Sections
Recommended

/