KINEMATIC THEORETICAL MODEL FOR ROAD WIDENING DESIGN IN WIND FARMS

Wang Yudong, Wang Junjie, Shen Lu

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (5) : 44-50.

PDF(1933 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1933 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (5) : 44-50. DOI: 10.19912/j.0254-0096.tynxb.2023-0085

KINEMATIC THEORETICAL MODEL FOR ROAD WIDENING DESIGN IN WIND FARMS

  • Wang Yudong1,2, Wang Junjie2, Shen Lu1,2
Author information +
History +

Abstract

In order to solve the problem that the value of current wind farm road widening design is too large and sometimes does not meet transportation requirements, it is based on the principles of rigid body kinematics in theoretical mechanics, uses the velocity projection theorem, combines with design speed, circular curve radius, route turning angle, and other factors to construct a theoretical model for wind farm road widening design. Based on this model and combined with commonly used transportation vehicle parameters in wind farms, this paper quantitatively analyzes the influence of circular curve radius, corner value, and vehicle size on the widening value. The widening parameters in current technical standards are compared and analyzed. The results show that the widening design model based on kinematics theory can effectively reduce the road widening value. The research results of this paper aim to provide theoretical basis for the design of wind farm roads and roads with similar special transportation needs.

Key words

wind farms / kinematics / widening(transportation arteries) / velocity projection principle / turning angle value

Cite this article

Download Citations
Wang Yudong, Wang Junjie, Shen Lu. KINEMATIC THEORETICAL MODEL FOR ROAD WIDENING DESIGN IN WIND FARMS[J]. Acta Energiae Solaris Sinica. 2024, 45(5): 44-50 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0085

References

[1] 许昌, 陈丹丹, 韩星星, 等. 复杂地形风电场一体化优化设计研究[J]. 太阳能学报, 2017, 38(12): 3368-3375.
XU C, CHEN D D, HAN X X, et al.Study of integrated optimization design of wind farm in complex terrain[J]. Acta energiae solaris sinica, 2017, 38(12): 3368-3375.
[2] 方君, 王立忠, 洪义, 等. 泥石流对山区风电场冲击防治的影响研究[J]. 太阳能学报, 2022, 43(2): 357-364.
FANG J, WANG L Z, HONG Y, et al.Study on impact mitigation of debris flow to mountainous wind farms[J]. Acta energiae solaris sinica, 2022, 43(2): 357-364.
[3] AASHTO GDHS 6—2011. American Association of State Highway and Transportation Officials (2011), A policy on geometric design of highways and streets[S].
[4] EQUR1110213C, ICTAAL:instruction surles conditions techniques d’aménagement des autoroutes de Iiaison, 2000[S].
[5] AGRD03-16. Guide to road design part 3: geometric design[S].
[6] Highway agency. Highway link design (TD9/93)[S]. UK, 2002.
[7] JTG D20—2017, 公路路线设计规范[S].
JTG D20—2017, Design specification for highway alignment[S].
[8] 姚昕亮. 风电场道路设计研究[D]. 杭州: 浙江大学, 2013.
YAO X L.Study on road design of the wind farm[D]. Hangzhou: Zhejiang University, 2013.
[9] 郭迎福, 刘亦, 刘厚才, 等. 风机叶片山地运输车辆转弯半径与道路占用分析[J]. 公路与汽运, 2013(4): 11-14.
GUO Y F, LIU Y, LIU H C, et al.Analysis of turning radius and road occupation of mountain transport vehicles with fan blades[J]. Highways & automotive applications, 2013(4): 11-14.
[10] 陈康东, 李晓梅. 丘陵地区风电场道路路线设计及要点分析[J]. 太阳能, 2013(24): 57-60.
CHEN K D, LI X M.Road route design and key points analysis of wind farm in hilly area[J]. Solar energy, 2013(24): 57-60.
[11] 杨永红, 邓卓. 满足铰接列车安全通行的平曲线指标研究[J]. 华南理工大学学报(自然科学版), 2019, 47(6): 87-93.
YANG Y H, DENG Z.Study on horizontal curve index satisfying the safe passing of articulated train[J]. Journal of South China University of Technology (natural science edition), 2019, 47(6): 87-93.
[12] 赵一鸣. 山地风电场场内道路圆曲线半径和路基宽度设计指标研究[J]. 公路工程, 2018, 43(2): 124-128.
ZHAO Y M.Study on design index of circle curve radius and pavement width in mountain wind farm[J]. Highway engineering, 2018, 43(2): 124-128.
[13] 马开志, 周向阳. 山地风电场运输道路设计要点分析[J]. 南方能源建设, 2018, 5(增刊1): 172-176.
MA K Z, ZHOU X Y.Research on the road route design of the wind farm in mountainous area[J]. Southern energy construction, 2018, 5(S1): 172-176.
[14] 曾诗晴, 谢潇, 张越, 等. 多维地形环境与风机参数约束的风电场道路优化设计方法[J]. 地理信息世界, 2018, 25(3): 54-59.
ZENG S Q, XIE X, ZHANG Y, et al.Multi dimensional terrain environment and fan parameter constraint wind farm road optimal design method[J]. Geomatics world, 2018, 25(3): 54-59.
[15] NB/T 10209—2019, 风电场工程道路设计规范[S].
NB/T 10209—2019, Code for design of road for wind power projects[S].
[16] 哈尔滨工业大学理论力学教研室. 理论力学-Ⅱ[M]. 8版. 北京: 高等教育出版社, 2016.
Theoretical mechanics teaching and research office of Harbin university of technology. Theoretical mechanics-Ⅱ[M]. 8th edition. Beijing: Higher Education Press, 2016.
PDF(1933 KB)

Accesses

Citation

Detail

Sections
Recommended

/