ONLINE PARAMETER IDENTIFICATION AND SOC ESTIMATION OF LITHIUM BATTERY BASED ON IMAFFRLS-EKF

Dong Lei, Lai Jidong, Su Jianhui, Xie Qilong, Wang Xiang, Zhou Chenguang

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (6) : 66-74.

PDF(3310 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(3310 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (6) : 66-74. DOI: 10.19912/j.0254-0096.tynxb.2023-0094

ONLINE PARAMETER IDENTIFICATION AND SOC ESTIMATION OF LITHIUM BATTERY BASED ON IMAFFRLS-EKF

  • Dong Lei1,2, Lai Jidong1,2, Su Jianhui1,2, Xie Qilong1,2, Wang Xiang1,2, Zhou Chenguang1,2
Author information +
History +

Abstract

A least-squares online parameter identification method with an improved forgetting factor (IMAFFRLS) is proposed for the extended Kalman filter (EKF) method-based lithium-ion battery SOC estimation, which is vulnerable to the online identification accuracy of model parameters by the least-squares method and its improvement methods. Based on the dual-polarized equivalent circuit model, the causes of errors in the traditional forgetting factor-based least squares(FFRLS) method for identifying model parameters are analyzed, and it is noted that it is difficult to accurately track multiple model parameters varying at different rates with a single forgetting factor. By decoupling the covariance and gain matrices in the FFRLS algorithm, multiple variable forgetting factors are introduced to independently correct the estimation errors of different parameters. The adaptive variation of each forgetting factor is achieved based on the degree of input current fluctuation and the output voltage observation error in the moving interval. In addition, the two parameter identification algorithms before and after the improvement are combined with the EKF algorithm to realize the SOC estimation of Li-ion batteries. Finally, a comparative simulation based on Matlab is performed to verify the proposed model. The simulation results show that the proposed IMAFFRLS-EKF algorithm can identify the model parameters and estimate the SOC with higher accuracy than the FFRLS-EKF algorithm.

Key words

lithium battery / parameter identification / state estimation / extended Kalman filters / forgetting factor / least squares

Cite this article

Download Citations
Dong Lei, Lai Jidong, Su Jianhui, Xie Qilong, Wang Xiang, Zhou Chenguang. ONLINE PARAMETER IDENTIFICATION AND SOC ESTIMATION OF LITHIUM BATTERY BASED ON IMAFFRLS-EKF[J]. Acta Energiae Solaris Sinica. 2024, 45(6): 66-74 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0094

References

[1] SCHMUCH R, WAGNER R, HÖRPEL G, et al. Performance and cost of materials for lithium-based rechargeable automotive batteries[J]. Nature energy, 2018, 3(4): 267-278.
[2] 何冰琛, 杨薛明, 王劲松, 等.基于PCA-GPR的锂离子电池剩余使用寿命预测[J].太阳能学报, 2022, 43(5): 484-491.
HE B C, YANG X M, WANG J S, et al.Prediction of remaining useful life of lithium-ion batteries based on PCA-GPR[J]. Acta energiae solaris sinica, 2022, 43(5): 484-491.
[3] 王子毅, 朱承治, 周杨林, 等.基于动态可重构电池网络的OCV-SOC在线估计[J].中国电机工程学报, 2022, 42(8): 2919-2929.
WANG Z Y, ZHU C Z, ZHOU Y L, et al.OCV-SOC estimation based on dynamic reconfigurable battery network[J]. Proceedings of the CSEE, 2022, 42(8): 2919-2929.
[4] 周雅夫, 史宏宇.面向实车数据的电动汽车电池退役轨迹预测[J].太阳能学报, 2022, 43(5) : 510-517.
ZHOU Y F, SHI H Y.Battery retirement trajectory prediction of electric vehicle based on real vehicle data[J]. Acta energiae solaris sinica, 2022, 43(5): 510-517.
[5] 孙鹏宇, 李建良, 陶知非, 等.动态工况电池在线参数辨识及SOC估计研究[J].电子测量与仪器学报, 2021, 35(1): 10-17.
SUN P Y, LI J L, TAO Z F, et al.Research on online parameter identification and SOC estimation of battery under dynamic conditions[J]. Journal of electronic measurement and instrumentation, 2021, 35(1): 10-17.
[6] 胡捷, 苏建徽, 杜燕, 等. 基于最小二乘法的PEMFC电堆模型参数辨识[J]. 太阳能学报, 2021, 42(6): 1-4.
HU J, SU J H, DU Y, et al.Parameter identification of PEMFC stack model based on least square method[J]. Acta energiae solaris sinica, 2021, 42(6): 1-4.
[7] 庞辉, 郭龙, 武龙星, 等.考虑环境温度影响的锂离子电池改进双极化模型及其荷电状态估算[J].电工技术学报, 2021, 36(10): 2178-2189.
PANG H, GUO L, WU L X, et al.An improved dual polarization model of Li-ion battery and its state of charge estimation considering ambient temperature[J]. Transactions of China Electrotechnical Society, 2021, 36(10): 2178-2189.
[8] VAHIDI A, STEFANOPOULOU A, PENG H.Recursive least squares with forgetting for online estimation of vehicle mass and road grade: theory and experiments[J]. Vehicle system dynamics, 2005, 43(1): 31-55.
[9] 唐佳, 刘士齐, 刘静雯, 等. 基于向量式多遗忘因子最小二乘法的城轨列车储能元件充放电参数辨识[J].武汉大学学报(工学版), 2020, 53(6) : 527-533.
TANG J, LIU S Q, LIU J W, et al.Parameter identification in urban rail train energy storage elements using a vector multi-forgetting factor least square method[J].Engineering journal of Wuhan University, 2020, 53(6): 527-533.
[10] ROZAQI L, RIJANTO E, KANARACHOS S.Comparison between RLS-GA and RLS-PSO for Li-ion battery SOC and SOH estimation: a simulation study[J]. Journal of mechatronics, electrical power, and vehicular technology, 2017, 8(1): 40-49.
[11] HAO X Y, WANG S L, FAN Y C, et al.An improved forgetting factor recursive least square and unscented particle filtering algorithm for accurate lithium-ion battery state of charge estimation[J]. Journal of energy storage, 2023, 59: 106478.
[12] 王浩, 郑燕萍, 虞杨.基于动态优选遗忘因子最小二乘在线辨识的磷酸铁锂电池SOC估算[J].汽车技术, 2021(10): 23-29.
WANG H, ZHENG Y P, YU Y.Lithium iron phosphate battery SOC estimation based on the least square online identification of dynamic optimal forgetting factor[J]. Automobile technology, 2021(10): 23-29.
[13] OUYANG T C, XU P H, CHEN J X, et al.Improved parameters identification and state of charge estimation for lithium-ion battery with real-time optimal forgetting factor[J]. Electrochimica acta, 2020,353: 136576.
[14] RAHIMI-EICHI H, BARONTI F, CHOW M Y.Online adaptive parameter identification and state-of-charge coestimation for lithium-polymer battery cells[J]. IEEE transactions on industrial electronics, 2014, 61(4): 2053-2061.
[15] ZHOU Z K, DUAN B, KANG Y Z, et al.A low-complexity state of charge estimation method for series-connected lithium-ion battery pack used in electric vehicles[J]. Journal of power sources, 2019, 441: 226972.
[16] ZHENG F D, XING Y J, JIANG J C, et al.Influence of different open circuit voltage tests on state of charge online estimation for lithium-ion batteries[J]. Applied energy, 2016, 183: 513-525.
[17] XING Y J, HE W, PECHT M, et al.State of charge estimation of lithium-ion batteries using the open-circuit voltage at various ambient temperatures[J]. Applied energy, 2014, 113: 106-115.
[18] HE W, WILLIARD N, CHEN C C, et al.State of charge estimation for Li-ion batteries using neural network modeling and unscented Kalman filter-based error cancellation[J]. International journal of electrical power & energy systems, 2014, 62: 783-791.
PDF(3310 KB)

Accesses

Citation

Detail

Sections
Recommended

/