SCHEDULING STRATEGY OF DISTRIBUTION GRID WITH ELECTRIC VEHICLES AND PHOTOLATIC BASED ON EVOLUTIONARY DYNAMICS GAME

Yan Limei, Zeng Jiawei, Xu Jianjun, Peng Cheng, Zhao Shuqi, Jia Ying

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (5) : 316-323.

PDF(2004 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2004 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (5) : 316-323. DOI: 10.19912/j.0254-0096.tynxb.2023-0102

SCHEDULING STRATEGY OF DISTRIBUTION GRID WITH ELECTRIC VEHICLES AND PHOTOLATIC BASED ON EVOLUTIONARY DYNAMICS GAME

  • Yan Limei, Zeng Jiawei, Xu Jianjun, Peng Cheng, Zhao Shuqi, Jia Ying
Author information +
History +

Abstract

Aiming at the three-phase unbalance problem in the power grid that may be caused by the disorderly charging behavior of large-scale electric vehicles, a charging scheduling strategy for electric vehicles that considers three-phase load balance and photovoltaic consumption based on an evolutionary dynamic game model is proposed. First, based on the subjectivity of EV period for connecting to the grid and the uncertainty of PV output and load, the evolutionary dynamic game equation between nomad populations and sedentary populations is constructed. Then, considering the interests of both the user and the grid, a dispatching optimization model is designed to minimize the charging cost of electric vehicles, three-phase load imbalance and reactive power demand. Finally, by simulating and solving a distribution network example in a commercial area, the three-phase active power curve, the three-phase reactive power curve and the change trend of the state of charge curve are compared and analyzed. The results of the calculation example show that the dispatching strategy can effectively reduce the three-phase unbalance, meet the needs of reactive power compensation and improve the charging cost of users.

Key words

PV power / distribution grid / electric vehicle / power control / electric load management / reactive power compensation / evolutionary dynamic game

Cite this article

Download Citations
Yan Limei, Zeng Jiawei, Xu Jianjun, Peng Cheng, Zhao Shuqi, Jia Ying. SCHEDULING STRATEGY OF DISTRIBUTION GRID WITH ELECTRIC VEHICLES AND PHOTOLATIC BASED ON EVOLUTIONARY DYNAMICS GAME[J]. Acta Energiae Solaris Sinica. 2024, 45(5): 316-323 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0102

References

[1] 苏海锋, 赵可为, 李岩, 等. 规模化电动汽车三相负荷平衡充电选线装置与仿真分析[J]. 电力自动化设备,2018, 38(6): 103-108.
SU H F, ZHAO K W, LI Y, et al.Three-phase load balancing charging line selection device and simulation analysis of large-scale electric vehicle[J]. Electric power automation equipment, 2018, 38(6): 103-108.
[2] 董海鹰, 贠韫韵, 汪宁渤, 等. 基于双重电价的电动汽车充放电两阶段优化调度策略[J]. 太阳能学报, 2021,42(4): 115-124.
DONG H Y, YUN Y Y, WANG N B, et al.Two-stage dispatch optimization strategy for charging and discharging of electric vehicles based on double electricity price[J].Acta energiae solaris sinica, 2021, 42(4): 115-124.
[3] 丁明, 胡迪, 毕锐, 等. 含高渗透率可再生能源的配电网可靠性分析[J]. 太阳能学报, 2020, 41(2): 194-202.
DING M,HU D, BI R, et al.Reliability analysis of distribution system containing high penetration renewable energy[J]. Acta energiae solaris sinica, 2020, 41(2): 194-202.
[4] SUN B J.A multi-objective optimization model for fast electric vehicle charging stations with wind, PV power and energy storage[J]. Journal of cleaner production 2021, 288: 125564.
[5] 张程嘉, 刘俊勇, 向月, 等. 基于数据挖掘的电动汽车充电设施配置与两阶段充电优化调度[J]. 中国电机工程学报, 2018, 38(4): 1054-1064, 1282.
ZHANG C J, LIU J Y, XIANG Y, et al.Electric vehicle charging facilities planning and its two-stage optimal charging based on data mining[J]. Proceedings of the CSEE, 2018, 38(4): 1054-1064, 1282.
[6] KEMPTON W, TOMIĆ J.Vehicle-to-grid power implementation: from stabilizing the grid to supporting large-scale renewable energy[J]. Journal of power sources 2005, 144(1): 280-294.
[7] 潘军, 吴红斌, 许道强, 等. 光伏/电动汽车/负荷博弈的屋顶光伏容量优化[J]. 电力系统自动化, 2019, 43(1):186-193.
PAN J, WU H B, XU D Q, et al.Capacity optimization of rooftop photovoltaic based on photovoltaic/electric vehicle/load game[J]. Automation of electric power systems, 2019, 43(1): 186-193.
[8] 符杨, 孟祥浩, 苏向敬, 等. 考虑逆变器无功支撑和三相选择的不平衡主动配电网电动汽车有序充电控制[J]. 电力自动化设备, 2020, 40(12): 1-12.
FU Y, MENG X H, SU X J, et al.Coordinated charging control of PEV considering inverter’s reactive power support and three phase switching in unbalanced active distribution networks[J]. Electric power automation equipment, 2020, 40(12): 1-12.
[9] JABALAMELI N, SU X, DEILAMI S.An online coordinated charging/discharging strategy of plug-in electric vehicles in unbalanced active distribution networks with ancillary reactive service in the energy market[J]. Energies, 2019, 12(7): 1350.
[10] 童方格, 谭阳红, 罗春辉. 基于融合熵时段划分的三相配电网动态重构[J]. 电力自动化设备, 2019, 39(11):78-84.
TONG F G, TAN Y H, LUO C H.Dynamic reconstruction of three-phase distribution network based on time division of fusion entropy[J]. Electric power automation equipment, 2019, 39(11): 78-84.
[11] 李怡然, 张姝, 肖先勇, 等. V2G模式下计及供需两侧需求的电动汽车充放电调度策略[J]. 电力自动化设备,2021, 41(3): 129-135, 143.
LI Y R, ZHANG S, XIAO X Y, et al.Charging and discharging scheduling strategy of EVs considering demands of supply side and demand side under V2G mode[J]. Electric power automation equipment, 2021, 41(3):129-135, 143.
[12] 贾海清, 林延平, 刘茹, 等. 考虑需求侧无功不确定性的负荷聚合商运营优化模型[J]. 太阳能学报, 2022, 43(6): 17-23.
JIA H Q,LIN Y P, LIU R, et al.Load aggregator operation optimization model considering demand response uncertainty[J]. Acta energiae solaris sinica, 2022, 43(6):17-23.
[13] CHUNG H M, LI W T, YUEN C, et al.Electric vehicle charge scheduling mechanism to maximize cost efficiency and user convenience[J]. IEEE transactions on smart grid, 2019, 10(3): 3020-3030.
[14] 侯慧, 王逸凡, 赵波, 等. 价格与激励需求响应下电动汽车负荷聚集商调度策略[J]. 电网技术, 2022, 46(4):1259-1269.
HOU H, WANG Y F, ZHAO B, et al.Electric vehicle aggregator dispatching strategy under price and incentive demand response[J]. Power system technology, 2022, 46(4): 1259-1269.
[15] ZHENG Y S, LUO J T, YANG X L, et al.Intelligent regulation on demand response for electric vehicle charging: a dynamic game method[J]. IEEE access, 2020, 8: 66105-66115.
[16] OVALLE A, HABLY A, BACHA S.Grid optimal integration of electric vehicles: examples with Matlab implementation[M]. Cham: Springer International Publishing, 2018.
[17] 孙波, 董浩, 王璐, 等. 计及电动汽车需求响应的风储混合系统日前联合优化调度模型[J]. 太阳能学报,2021, 42(4): 107-114.
SUN B, DONG H, WANG L, et al.Joint optimal scheduling model for wind-storage hybrid system considering demand response of electric vehicle[J]. Acta energiae solaris sinica, 2021, 42(4): 107-114.
[18] 杨晓东, 张有兵, 任帅杰, 等. 含高渗透率光伏发电并网型微网中的电动汽车优化调度方法[J]. 电力系统自动化, 2016, 40(18): 15-23.
YANG X D, ZHANG Y B, REN S J, et al.Optimal scheduling scheme of electric vehicles in grid-connected microgrid with high penetration photovoltaic power[J].Automation of electric power systems, 2016, 40(18): 15-23.
[19] 王姝凝, 杨少兵. 居民小区电动汽车充电负荷有序控制策略[J]. 电力系统自动化, 2016, 40(4): 71-77.
WANG S N, YANG S B.A coordinated charging control strategy for electric vehicles charging load in residential area[J]. Automation of electric power systems, 2016, 40(4): 71-77.
[20] 史文龙, 秦文萍, 王丽彬, 等. 计及电动汽车需求和分时电价差异的区域电网LSTM调度策略[J]. 中国电机工程学报, 2022, 42(10): 3573-3587.
SHI W L, QIN W P, WANG L B, et al.Regional power grid LSTM dispatch strategy considering the difference between electric vehicle demand and time-of-use electricity price[J]. Proceedings of the CSEE, 2022, 42(10): 3573-3587.
PDF(2004 KB)

Accesses

Citation

Detail

Sections
Recommended

/