OPTIMIZATION OF MICROGRID SECONDARY BATTERIES ENERGY STORAGE CONSIDERING USER-SHARED PEAK-SHAVING AUXILIARY SERVICE COST

Li Xinru, Shen Jin, Chen Zhuohang

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (5) : 217-224.

PDF(1718 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1718 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (5) : 217-224. DOI: 10.19912/j.0254-0096.tynxb.2023-0103

OPTIMIZATION OF MICROGRID SECONDARY BATTERIES ENERGY STORAGE CONSIDERING USER-SHARED PEAK-SHAVING AUXILIARY SERVICE COST

  • Li Xinru1, Shen Jin1, Chen Zhuohang2
Author information +
History +

Abstract

To enhance the peak-shaving and valley-filling effectiveness in residential microgrids and reduce the cost of energy storage system, this paper adopts secondary batteries as the chosen energy storage solution. The paper innovates beyond existing optimization models by involving multiple entities on both the user and energy storage sides concurrently in peak-shaving. A microgrid secondary batteries energy storage optimal configuration model is proposed, considering user-shared peak-shaving auxiliary service cost. Initially, the paper introduces relevant mathematical models for power generation, load calculation, and energy storage charge and discharge. Subsequently, the paper formulates objective functions, aiming to minimize both the cost of configuring the secondary batteries energy storage system and the user-shared peak-shaving auxiliary service cost. The particle swarm optimization algorithm is adopted for the model solution. Finally, a case study is conducted on a residential microgrid to compare the economic and effective performance of the proposed method. Additionally, sensitivity analysis of the cost of secondary batteries energy storage configuration is performed to examine the impact of parameter variations on the total cost of energy storage batteries.

Key words

microgrids / secondary batteries / battery storage / optimal configuration / peak-shaving auxiliary service

Cite this article

Download Citations
Li Xinru, Shen Jin, Chen Zhuohang. OPTIMIZATION OF MICROGRID SECONDARY BATTERIES ENERGY STORAGE CONSIDERING USER-SHARED PEAK-SHAVING AUXILIARY SERVICE COST[J]. Acta Energiae Solaris Sinica. 2024, 45(5): 217-224 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0103

References

[1] 张家安, 郝峰, 董存, 等. 基于两阶段不确定性量化的光伏发电超短期功率预测[J]. 太阳能学报, 2023, 44(1): 69-77.
ZHANG J A, HAO F, DONG C, et al.Ultra-short-term power forecasting of photovoltaic power generation based on two-stage uncertainty quantization[J]. Acta energiae solaris sinica, 2023, 44(1): 69-77.
[2] 刘文轩, 宋璇坤, 韩柳, 等. 计及需求响应的用户侧光伏微电网储能配置方法[J]. 电气自动化, 2020, 42(5): 22-24, 79.
LIU W X, SONG X K, HAN L, et al.Energy storage configuration method for user-side photovoltaic micro-grid considering demand response[J]. Electrical automation, 2020, 42(5): 22-24, 79.
[3] 周喜超, 孟凡强, 李娜, 等. 电池储能系统参与电网削峰填谷控制策略[J]. 热力发电, 2021, 50(4): 44-50.
ZHOU X C, MENG F Q, LI N, et al.Control strategies of battery energy storage system participating in peak load regulation of power grid[J]. Thermal power generation, 2021, 50(4): 44-50.
[4] 陆燕娟, 潘庭龙, 杨朝辉. 计及电动汽车的社区微网储能容量配置[J]. 太阳能学报, 2021, 42(12): 362-367.
LU Y J, PAN T L, YANG Z H.Energy storage capacity configuration in community microgrid considering electric vehicles[J]. Acta energiae solaris sinica, 2021, 42(12): 362-367.
[5] 严干贵, 冯晓东, 李军徽, 等. 用于松弛调峰瓶颈的储能系统容量配置方法[J]. 中国电机工程学报, 2012, 32(28): 27-35, 22.
YAN G G, FENG X D, LI J H, et al.Optimization of energy storage system capacity for relaxing peak load regulation bottlenecks[J]. Proceedings of the CSEE, 2012, 32(28): 27-35, 22.
[6] 韩晓娟, 田春光, 张浩, 等. 用于削峰填谷的电池储能系统经济价值评估方法[J]. 太阳能学报, 2014, 35(9): 1634-1638.
HAN X J, TIAN C G, ZHANG H, et al.Economic evaluation method of battery energy storage system in peak load shifting[J]. Acta energiae solaris sinica, 2014, 35(9): 1634-1638.
[7] 孟高军, 苏令, 孙玉坤, 等. 退役电池梯次利用的一致性管理研究综述[J]. 电源技术, 2021, 45(10): 1376-1379.
MENG G J, SU L, SUN Y K, et al.Review on consistency management of echelon use of retired battery[J]. Chinese journal of power sources, 2021, 45(10): 1376-1379.
[8] 刘若桐, 李建林, 吕喆, 等. 退役动力电池应用潜力分析[J]. 电气技术, 2021, 22(8): 1-9.
LIU R T, LI J L, LYU Z, et al.Application potential analysis of decommissioned power batteries[J]. Electrical engineering, 2021, 22(8): 1-9.
[9] 尚瑨, 邰能灵, 刘琦, 等. 采用区间控制的蓄电池储能电站调峰运行控制策略[J]. 电工技术学报, 2015, 30(16): 221-229.
SHANG J, TAI N L, LIU Q, et al.Load shifting scheme of battery energy storage system based on interval controlling[J]. Transactions of China Electrotechnical Society, 2015, 30(16): 221-229.
[10] 江岳文, 韦嘉睿. 考虑用户侧参与的调峰辅助服务费用分摊机制[J]. 电力自动化设备, 2022, 42(4): 41-47.
JIANG Y W, WEI J R.Allocation mechanism of peak-shaving auxiliary service cost considering consumer side participation[J]. Electric power automation equipment, 2022, 42(4): 41-47.
[11] 王玉萍, 刘磊, 李小璐, 等. 调峰辅助服务费用分摊机制[J]. 广东电力, 2019, 32(2): 1-7.
WANG Y P, LIU L, LI X L, et al.Allocation mechanism of peak load regulation auxiliary service cost[J]. Guangdong electric power, 2019, 32(2): 1-7.
[12] 何永秀, 黄文杰, 赵晓丽, 等. 大用户直购电辅助服务成本分摊机制[J]. 华北电力大学学报, 2004, 31(4): 70-74.
HE Y X, HUANG W J, ZHAO X L, et al.Cost allocation designing of ancillary service for larger electricity customers supplied directly by suppliers[J]. Journal of North China Electric Power University, 2004, 31(4): 70-74.
[13] 刘景超. 考虑电动汽车负荷的微电网光-储系统优化配置[D]. 大连: 大连理工大学, 2020.
LIU J C.Optimal configuration for PV-BESS system in residential area microgrid considering electric vehicles[D]. Dalian: Dalian University of Technology, 2020.
[14] 刘建涛, 曹雷, 马杰, 等. 基于储能系统的用户光伏并网发电系统经济性分析[J]. 太阳能学报, 2012, 33(11): 1887-1892.
LIU J T, CAO L, MA J, et al.Economic analysis of user’s grid-connected PV system based on energy storage system[J]. Acta energiae solaris sinica, 2012, 33(11): 1887-1892.
[15] 付波, 邓竞成, 李超顺, 等. 计及虚拟储能的风光储独立微电网优化配置[J]. 科学技术与工程, 2022, 22(19): 8340-8346.
FU B, DENG J C, LI C S, et al.Optimal allocation of wind-solar-battery microgrid considering virtual energy storage[J]. Science technology and engineering, 2022, 22(19): 8340-8346.
[16] 李含玉, 杜兆斌, 陈丽丹, 等. 基于出行模拟的电动汽车充电负荷预测模型及V2G评估[J]. 电力系统自动化, 2019, 43(21): 88-96.
LI H Y, DU Z B, CHEN L D, et al.Trip simulation based charging load forecasting model and vehicle-to-grid evaluation of electric vehicles[J]. Automation of electric power systems, 2019, 43(21): 88-96.
[17] 杨锡运, 张璜, 修晓青, 等. 基于商业园区源/储/荷协同运行的储能系统多目标优化配置[J]. 电网技术, 2017, 41(12): 3996-4003.
YANG X Y, ZHANG H, XIU X Q, et al.Multi-objective optimal configuration of energy storage systems based on coordinated operation of source/storage/load in commercial park[J]. Power system technology, 2017, 41(12): 3996-4003.
[18] KENNEDY J, EBERHART R.Particle swarm optimization[C]//Proceedings of ICNN'95-International Conference on Neural Networks. Perth, WA, Australia, 1995: 1942-1948.
[19] EBERHART R, KENNEDY J.A new optimizer using particle swarm theory[C]//MHS’95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science. Nagoya, Japan, 1995: 39-43.
[20] 刘梦. 含柔性负荷的微网储能配置与调度方法研究[D]. 北京: 北京交通大学, 2018.
LIU M.Capacity configuration of battery energy storage system and scheduling for microgrid considering flexible load[D]. Beijing: Beijing Jiaotong University, 2018.
PDF(1718 KB)

Accesses

Citation

Detail

Sections
Recommended

/