NUMERICAL INVESTIGATION ON ENHANCING INDOOR THERMAL ENVIRONMENT OF SOLAR GREENHOUSES THROUGH NOVEL ACTIVE HEAT STORAGE AND RELEASE WALL

Chen Jinxuan, Du Zhenyu

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (5) : 431-440.

PDF(2121 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2121 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (5) : 431-440. DOI: 10.19912/j.0254-0096.tynxb.2023-0107

NUMERICAL INVESTIGATION ON ENHANCING INDOOR THERMAL ENVIRONMENT OF SOLAR GREENHOUSES THROUGH NOVEL ACTIVE HEAT STORAGE AND RELEASE WALL

  • Chen Jinxuan, Du Zhenyu
Author information +
History +

Abstract

To mitigate the issue of a thermally stable layer in block-bearing walls of solar greenhouses, which restricts the utilization of free solar energy at night, leading to a significant temperature disparity between daytime and nighttime indoor air, this paper introduces a novel active heat storage and discharge composite wall featuring a gravity circulation annular tube. The model is established based on heat transfer theory, incorporating the unsteady heat transfer of the wall, coupling it with the heat balance equation of indoor air, and executing numerical simulations utilizing Matlab. The results indicate that in cold regions during winter, the new active thermal storage wall elevates the indoor air temperature by 1.21 °C at night, marking a 13.12% increase compared to a wall lacking a gravity circulation annulus. Moreover, the daily effective temperature accumulation is 7.88 °C·h higher, representing a 4.84% improvement over a wall without a gravity circulation annulus. The average daily heat load experiences a reduction of 4769.24 W/d, accounting for a 17.35% decrease compared to a wall without a gravity circulation annulus. This innovative wall enhances the active heat storage and release capabilities, facilitating the transfer of more solar energy for nighttime use. It effectively curtails excessive daytime room temperatures, augments nighttime room temperatures, and minimizes the daily variation in indoor air temperature. Such improvements are conducive to the four-stage variable temperature management of crops, promoting the rapid growth of winter crops.

Key words

solar buildings / heat storage / numerical simulation / solar greenhouse / daily temperature range / wall

Cite this article

Download Citations
Chen Jinxuan, Du Zhenyu. NUMERICAL INVESTIGATION ON ENHANCING INDOOR THERMAL ENVIRONMENT OF SOLAR GREENHOUSES THROUGH NOVEL ACTIVE HEAT STORAGE AND RELEASE WALL[J]. Acta Energiae Solaris Sinica. 2024, 45(5): 431-440 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0107

References

[1] KUMAR M, HAILLOT D, GIBOUT S.Survey and evaluation of solar technologies for agricultural greenhouse application[J]. Solar energy, 2022, 232:18-34.
[2] 鲍恩财, 申婷婷, 张勇, 等. 装配式主动蓄热墙体日光温室热性能分析[J]. 农业工程学报, 2018, 34(10): 178-186.
BAO E C, SHEN T T, ZHANG Y, et al.Thermal performance analysis of assembled active heat storage wall in Chinese solar greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(10): 178-186.
[3] 刘盼盼. 日光温室主被动相变蓄热墙体热工特性的数值研究[D]. 兰州: 兰州交通大学, 2017.
LIU P P.Numerical simulation of the thermal performances of greenhouse wall with phase change materials by active-passive heat storage[D]. Lanzhou: Lanzhou Jiaotong University, 2017.
[4] AZAIZIA Z, KOOLI S, HAMDI I, et al.Experimental study of a new mixed mode solar greenhouse drying system with and without thermal energy storage for pepper[J]. Renewable energy, 2020, 145: 1972-1984.
[5] YAN S R, ALI FAZILATI M, TOGHRAIE D, et al.Energy cost and efficiency analysis of greenhouse heating system enhancement using phase change material: an experimental study[J]. Renewable energy, 2021, 170: 133-140.
[6] 管勇, 陈超, 凌浩恕, 等. 日光温室三重结构相变蓄热墙体传热特性分析[J]. 农业工程学报, 2013, 29(21): 166-173.
GUAN Y, CHEN C, LING H S, et al.Analysis of heat transfer properties of three-layer wall with phase-change heat storage in solar greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(21): 166-173.
[7] 周莹, 王双喜, 刘中华, 等. 基于ANSYS的日光温室复合相变保温墙体的模拟研究[J]. 太阳能学报, 2020, 41(4): 113-122.
ZHOU Y, WANG S X, LIU Z H, et al.Simulation study on composite phase change thermal insulation walls in solar greenhouse based on ANSYS[J]. Acta energiae solaris sinica, 2020, 41(4): 113-122.
[8] LING H S, CHEN C, GUAN Y, et al.Active heat storage characteristics of active-passive triple wall with phase change material[J]. Solar energy, 2014, 110: 276-285.
[9] XU W W, GUO H Q, MA C W.An active solar water wall for passive solar greenhouse heating[J]. Applied energy, 2022, 308: 118270.
[10] LIU X A, WU X Y, XIA T Y, et al.New insights of designing thermal insulation and heat storage of Chinese solar greenhouse in high latitudes and cold regions[J]. Energy, 2022, 242: 122953.
[11] 钱滨江. 简明传热手册[M]. 北京: 高等教育出版社, 1983.
QIAN B J.Concise heat transfer manual[M]. Beijing: Higher Education Press, 1983.
[12] 陶文铨. 数值传热学[M]. 2版. 西安: 西安交通大学出版社, 2001.
TAO W Q.Numerical heat transfer[M]. 2nd ed. Xi’an: Xi'an Jiaotong University Press, 2001.
[13] LIU R, LI M, GUZMÁN J L, et al. A fast and practical one-dimensional transient model for greenhouse temperature and humidity[J]. Computers and electronics in agriculture, 2021, 186: 106186.
[14] 崔良卫. 冬季自然通风与全热回收日光温室环境因子的试验研究及夜间降湿初探[D]. 太原: 太原理工大学, 2010.
CUI L W.Experimental research of natural ventilation and total heat recycle sunlight greenhouse environmental factors and preliminary study of dehumidifying overnight in winter[D]. Taiyuan: Taiyuan University of Technology, 2010.
PDF(2121 KB)

Accesses

Citation

Detail

Sections
Recommended

/