EXPERIMENTAL STUDY ON ENERGY CONVERSION OF INTEGRATED SYSTEM WITH WAVE ENERGY CONVERTER AND BREAKWATER

Zhou Binzhen, Huang Xu, Lin Chusen, Zhang Hengming, Peng Jiaxin, Nie Zuli

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (5) : 185-190.

PDF(2266 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2266 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (5) : 185-190. DOI: 10.19912/j.0254-0096.tynxb.2023-0143

EXPERIMENTAL STUDY ON ENERGY CONVERSION OF INTEGRATED SYSTEM WITH WAVE ENERGY CONVERTER AND BREAKWATER

  • Zhou Binzhen1, Huang Xu1, Lin Chusen1, Zhang Hengming2, Peng Jiaxin1, Nie Zuli1
Author information +
History +

Abstract

The power generation and wave attenuation performance and the motion response of the box-type wave energy converter- breakwater integrated system are studied by physical model test, and compared with those of the isolated wave energy converter and the single floating breakwater. The impacts of the incident wave height on the power generation and wave attenuation performance of the integrated system are analyzed. Results show that the power generation performance of the integrated system is better than that of the isolated WEC float, and the wave attenuation performance is better than that of the single breakwater. The surge and pitch motion amplitudes of the breakwater for integrated system are smaller than those of single breakwater, but the heave motion response is larger. When the incident wave height increases, the power generation performance of the integrated system is improved while the wave attenuation performance decreases, and the motion response of the breakwater increases.

Key words

wave energy conversion / floating breakwater / wave energy extraction / wave attenuation / multi-degree motion

Cite this article

Download Citations
Zhou Binzhen, Huang Xu, Lin Chusen, Zhang Hengming, Peng Jiaxin, Nie Zuli. EXPERIMENTAL STUDY ON ENERGY CONVERSION OF INTEGRATED SYSTEM WITH WAVE ENERGY CONVERTER AND BREAKWATER[J]. Acta Energiae Solaris Sinica. 2024, 45(5): 185-190 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0143

References

[1] 路晴, 史宏达. 中国波浪能技术进展与未来趋势[J]. 海岸工程, 2022, 41(1): 1-12.
LU Q, SHI H D.Progress and future trend of wave energy technology in China[J]. Coastal engineering, 2022, 41(1): 1-12.
[2] 姜楠, 刘聪, 张萧, 等. 波浪能俘获装置的设计和研究[J]. 太阳能学报, 2022, 43(8): 447-451.
JIANG N, LIU C, ZHANG X, et al.Design and research of wave energy capture device[J]. Acta energiae solaris sinica, 2022, 43(8): 447-451.
[3] 张丽珍, 羊晓晟, 王世明, 等. 海洋波浪能发电装置的研究现状与发展前景[J]. 湖北农业科学, 2011, 50(1): 161-164.
ZHANG L Z, YANG X S, WANG S M, et al.Research status and developing prospect of ocean wave power generation device[J]. Hubei agricultural sciences, 2011, 50(1): 161-164.
[4] 彭伟, 张继生, 范亚宁, 等. 结合防波堤的振荡摇摆式波浪能装置试验研究[J]. 太阳能学报, 2021, 42(2): 295-301.
PENG W, ZHANG J S, FAN Y N, et al.Experimental study on oscillating flap-type wave energy device integrated with breakwater[J]. Acta energiae solaris sinica, 2021, 42(2): 295-301.
[5] ZHAO X L, NING D Z, ZOU Q P, et al.Hybrid floating breakwater-WEC system: a review[J]. Ocean engineering, 2019, 186: 106126.
[6] CHEN Q, ZANG J, BIRCHALL J, et al.On the hydrodynamic performance of a vertical pile-restrained WEC-type floating breakwater[J]. Renewable energy, 2020, 146: 414-425.
[7] NING D Z, ZHAO X L, GÖTEMAN M, et al. Hydrodynamic performance of a pile-restrained WEC-type floating breakwater: an experimental study[J]. Renewable energy, 2016, 95: 531-541.
[8] ZHAO X L, NING D Z, ZHANG C W, et al.Hydrodynamic investigation of an oscillating buoy wave energy converter integrated into a pile-restrained floating breakwater[J]. Energies, 2017, 10(5): 712.
[9] ZHANG H M, ZHOU B Z, VOGEL C, et al.Hydrodynamic performance of a floating breakwater as an oscillating-buoy type wave energy converter[J]. Applied energy, 2020, 257: 113996.
[10] ZHAO X L, NING D Z.Experimental investigation of breakwater-type WEC composed of both stationary and floating pontoons[J]. Energy, 2018, 155: 226-233.
[11] ZHANG H M, ZHOU B Z, VOGEL C, et al.Hydrodynamic performance of a dual-floater hybrid system combining a floating breakwater and an oscillating-buoy type wave energy converter[J]. Applied energy, 2020, 259: 114212.
[12] GUO B M, WANG R Q, NING D Z, et al.Hydrodynamic performance of a novel WEC-breakwater integrated system consisting of triple dual-freedom pontoons[J]. Energy, 2020, 209: 118463.
[13] ZHAO X L, XUE R, GENG J, et al.Analytical investigation on the hydrodynamic performance of a multi-pontoon breakwater-WEC system[J]. Ocean engineering, 2021, 220: 108394.
[14] 何则辰, 张崇伟, 宁德志, 等. 振荡浮子式波能转换装置阵列的物理模型水池试验[J]. 科技导报, 2021, 39(6): 47-52.
HE Z C, ZHANG C W, NING D Z, et al.Experimental study of an array of oscillating buoy wave energy converters in wave tank[J]. Science & technology review, 2021, 39(6): 47-52.
[15] NING D Z, ZHAO X L, CHEN L, et al.Hydrodynamic performance of an array of wave energy converters integrated with a pontoon-type breakwater[J]. Energies, 2018, 11(3): 685.
[16] ZHANG H M, ZHOU B Z, ZANG J, et al.Optimization of a three-dimensional hybrid system combining a floating breakwater and a wave energy converter array[J]. Energy conversion and management, 2021, 247: 114717.
[17] GODA Y, SUZUKI Y.Estimation of incident and reflected waves in random wave experiments[C]//Coastal engineering 1976. Honolulu, Hawaii, USA, 1977.
[18] LEE H, POGULURI S, BAE Y.Performance analysis of multiple wave energy converters placed on a floating platform in the frequency domain[J]. Energies, 2018, 11(2): 406.
PDF(2266 KB)

Accesses

Citation

Detail

Sections
Recommended

/