RESEARCH ON ULTRA-SHORT-TERM WIND POWER FORECAST BASED ON AVMD-CNN-GRU-Attention

Ren Dongfang, Ma Jiaqing, He Zhiqin, Wu Qinmu

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (6) : 436-443.

PDF(2635 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2635 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (6) : 436-443. DOI: 10.19912/j.0254-0096.tynxb.2023-0146

RESEARCH ON ULTRA-SHORT-TERM WIND POWER FORECAST BASED ON AVMD-CNN-GRU-Attention

  • Ren Dongfang, Ma Jiaqing, He Zhiqin, Wu Qinmu
Author information +
History +

Abstract

In order to improve the forecast accuracy of ultra-short-term wind power, an improved ultra-short-term wind power forecast model based on variational mode decomposition convolutional neural network (AVMD-CNN), gated recurrent unit (GRU) and attention mechanism (Attention) is proposed. Firstly, the wind power sequence is decomposed into K sub-modes by using the improved VMD. Then, each sub-mode is classified by sample entropy (SE) and center frequency. According to the classification results, each sub-mode is given a normalization method, and input into GRU-Attention and CNN-GRU-Attention models for training and forecasting according to SE values. Finally, the final results are obtained by superimposing the forecast results of each sub-mode, so as to complete the ultra-short-term wind power forecast. Using the determination coefficient(R2), mean absolute error (MAE), root mean square error (RMSE), and mean absolute percentage error (MAPE) as the accuracy assessment indexes, the actual arithmetic examples show that the R2 of the proposed model is improved by 12.06% on average compared with other methods, and the MAE, RMSE, and MAPE are reduced by 59.36%, 62.49%, and 48.34% respectively, with high prediction accuracy.

Key words

wind power / forecasting / variational mode decomposition / convolutional neural network / attention mechanism / sample entropy

Cite this article

Download Citations
Ren Dongfang, Ma Jiaqing, He Zhiqin, Wu Qinmu. RESEARCH ON ULTRA-SHORT-TERM WIND POWER FORECAST BASED ON AVMD-CNN-GRU-Attention[J]. Acta Energiae Solaris Sinica. 2024, 45(6): 436-443 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0146

References

[1] 赵泽妮, 云斯宁, 贾凌云, 等. 基于统计模型的短期风能预测方法研究进展[J]. 太阳能学报, 2022, 43(11): 224-234.
ZHAO Z N, YUN S N, JIA L Y, et al.Recent progress in short-term forecasting of wind energy based on statistical models[J]. Acta energiae solaris sinica, 2022, 43(11): 224-234.
[2] 贾凌云, 云斯宁, 赵泽妮, 等. 神经网络短期光伏发电预测的应用研究进展[J]. 太阳能学报, 2022, 43(12): 88-97.
JIA L Y, YUN S N, ZHAO Z N, et al.Recent progress of short-term forecasting of photovoltaic generation based on artificial neural networks[J]. Acta energiae solaris sinica, 2022, 43(12): 88-97.
[3] 向玲, 刘佳宁, 苏浩, 等. 基于CEEMDAN二次分解和LSTM的风速多步预测研究[J]. 太阳能学报, 2022, 43(8): 334-339.
XIANG L, LIU J N, SU H, et al.Research on multi-step wind speed forecast based on CEEMDAN secondary decomposition and LSTM[J]. Acta energiae solaris sinica, 2022, 43(8): 334-339.
[4] WANG L N, MAO M X, XIE J L, et al.Accurate solar PV power prediction interval method based on frequency-domain decomposition and LSTM model[J]. Energy, 2023, 262: 125592.
[5] DRAGOMIRETSKIY K, ZOSSO D.Variational mode decomposition[J]. IEEE transactions on signal processing, 2014, 62(3): 531-544.
[6] LALA H, KARMAKAR S.Detection and experimental validation of high impedance arc fault in distribution system using empirical mode decomposition[J]. IEEE systems journal, 2020, 14(3): 3494-3505.
[7] 杨海柱, 田馥铭, 张鹏, 等. 基于CEEMD-FE和AOA-LSSVM的短期电力负荷预测[J]. 电力系统保护与控制, 2022, 50(13): 126-133.
YANG H Z, TIAN F M, ZHANG P, et al.Short-term load forecasting based on CEEMD-FE-AOA-LSSVM[J]. Power system protection and control, 2022, 50(13): 126-133.
[8] 赵凌云, 刘友波, 沈晓东, 等. 基于CEEMDAN和改进时间卷积网络的短期风电功率预测模型[J]. 电力系统保护与控制, 2022, 50(1): 42-50.
ZHAO L Y, LIU Y B, SHEN X D, et al.Short-term wind power prediction model based on CEEMDAN and an improved time convolutional network[J]. Power system protection and control, 2022, 50(1): 42-50.
[9] 张婉莹, 何耀耀, 杨善林. 基于TVFEMD-SE和YJQRG的短期风电功率多步概率密度预测[J]. 系统工程理论与实践, 2022, 42(8): 2225-2242.
ZHANG W Y, HE Y Y, YANG S L.Multi-step probability density prediction of short-term wind power based on TVFEMD-SE and YJQRG[J]. Systems engineering-theory & practice, 2022, 42(8): 2225-2242.
[10] WANG F, XUAN Z M, ZHEN Z, et al.A day-ahead PV power forecasting method based on LSTM-RNN model and time correlation modification under partial daily pattern prediction framework[J]. Energy conversion and management, 2020, 212: 112766.
[11] WANG H Z, LEI Z X, ZHANG X, et al.A review of deep learning for renewable energy forecasting[J]. Energy conversion and management, 2019, 198: 111799.
[12] LEE D H, KIM K.PV power prediction in a peak zone using recurrent neural networks in the absence of future meteorological information[J]. Renewable energy, 2021, 173: 1098-1110.
[13] 盛四清, 金航, 刘长荣. 基于VMD-WSGRU的风电场发电功率中短期及短期预测[J]. 电网技术, 2022, 46(3): 897-904.
SHENG S Q, JIN H, LIU C R.Short-term and mid-short-term wind power forecasting based on VMD-WSGRU[J]. Power system technology, 2022, 46(3): 897-904.
[14] 赵兵, 王增平, 纪维佳, 等. 基于注意力机制的CNN-GRU短期电力负荷预测方法[J]. 电网技术, 2019, 43(12): 4370-4376.
ZHAO B, WANG Z P, JI W J, et al.A short-term power load forecasting method based on attention mechanism of CNN-GRU[J]. Power system technology, 2019, 43(12): 4370-4376.
[15] STRATIGAKOS A, BACHOUMIS A, VITA V, et al.Short-term net load forecasting with singular spectrum analysis and LSTM neural networks[J]. Energies, 2021, 14(14): 4107.
[16] 杨国清, 刘世林, 王德意, 等. 基于Attention-GRU风速修正和Stacking的短期风电功率预测[J]. 太阳能学报, 2022, 43(12): 273-281.
YANG G Q, LIU S L, WANG D Y, et al.Short-term wind power forecasting based on Attention-GRU wind speed correction and stacking[J]. Acta energiae solaris sinica, 2022, 43(12): 273-281.
[17] XIE Y T, SUN W, REN M M, et al.Stacking ensemble learning models for daily runoff prediction using 1D and 2D CNNs[J]. Expert systems with applications, 2023, 217: 119469.
[18] 倪超, 王聪, 朱婷婷, 等. 基于CNN-Bi-LSTM的太阳辐照度超短期预测[J]. 太阳能学报, 2022, 43(3): 197-202.
NI C, WANG C, ZHU T T, et al.Super-short-term forecast of solar irradiance based on CNN-Bi-LSTM[J]. Acta energiae solaris sinica, 2022, 43(3): 197-202.
[19] 郅伦海, 訾勇, 徐凯. 基于变分模态分解和神经网络的风速组合预测[J]. 合肥工业大学学报(自然科学版), 2022, 45(11): 1505-1510, 1584.
ZHI L H, ZI Y, XU K.Combination prediction of wind speed based on variational mode decomposition and neural network[J]. Journal of Hefei University of Technology(natural science), 2022, 45(11): 1505-1510, 1584.
[20] 刘栋, 魏霞, 王维庆, 等. 基于VMD-WPE和SSA-ELM的短期风电功率预测研究[J]. 太阳能学报, 2022, 43(12): 360-367.
LIU D, WEI X, WANG W Q, et al.Short term wind power forecasting based on VMD-WPE and SSA-ELM[J]. Acta energiae solaris sinica, 2022, 43(12): 360-367.
PDF(2635 KB)

Accesses

Citation

Detail

Sections
Recommended

/