ANALYSIS OF FLUID-STRUCTURE COUPLING CHARACTERISTICS OF COASTAL WIND TURBINE BLADEDS BASED ON MEASURED WIND FIELD

Pan Yueyue, Li Zhengnong, Zhang Yukun, Huang Bin

Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (12) : 330-340.

PDF(3490 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(3490 KB)
Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (12) : 330-340. DOI: 10.19912/j.0254-0096.tynxb.2023-0154

ANALYSIS OF FLUID-STRUCTURE COUPLING CHARACTERISTICS OF COASTAL WIND TURBINE BLADEDS BASED ON MEASURED WIND FIELD

  • Pan Yueyue1,2, Li Zhengnong2, Zhang Yukun3, Huang Bin4
Author information +
History +

Abstract

In this paper, the wind field characteristics of a coastal wind farm are obtained by the UAVs (unmanned aerial vehicles) wind filed measurement method, and the measured wind field parameters are applied to the subsequent computational fluid dynamics simulation. Taking the full-scale model of a 2 MW wind turbine blade as the research object, a fluid-structure coupling system is established based on Workbench platform for calculation. The numerical simulation results of near-wake wind velocity distribution are compared with the measured results, and the rationality of the numerical calculation is verified. Then, the flapping deformation and equivalent stress responses of the rotating blades at rated wind velocity are calculated. Results show that the flapping deformation of wind turbine blade reaches its maximum value at the azimuth of 0°, and the maximum flapping deformation is 1916.4 mm, which is close to the results of the static loading test 2299 mm. The flapping deformation increases nonlinearly along the span-wise direction of the blade, and with a larger increasing slope at 0.60 times the radius of the wind wheel. The equivalent stress concentration area of the blade is located at the junction of the girder and the leading edge, and appears at azimuth of 60°, where the maximum value is 0.78 times of the radius of the wind wheel. Stress is asymmetrically distributed along the wind wheel height direction.

Key words

wind turbine blades / fluid-structure interaction / wind velocity distribution / flapping deformation / equivalent stress

Cite this article

Download Citations
Pan Yueyue, Li Zhengnong, Zhang Yukun, Huang Bin. ANALYSIS OF FLUID-STRUCTURE COUPLING CHARACTERISTICS OF COASTAL WIND TURBINE BLADEDS BASED ON MEASURED WIND FIELD[J]. Acta Energiae Solaris Sinica. 2023, 44(12): 330-340 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0154

References

[1] TANG D, BAO S Y, LUO L J, et al.Study on the aeroelastic responses of a wind turbine using a coupled multibody-FVW method[J]. Energy, 2017, 141: 2300-2313.
[2] 李德源, 汪显能, 莫文威, 等. 非定常条件下风力机柔性叶片气弹耦合分析[J]. 太阳能学报, 2017, 38(4): 966-975.
LI D Y, WANG X N, MO W W, et al.Aeroelastic coupling analysis of flexible blades of wind turbine under unsteady conditions[J]. Acta energiae solaris sinica, 2017, 38(4): 966-975.
[3] 温州台风网,http://www.wztf121.com/analyse/wzs.
Wenzhou Typhoon Network,http://www.wztf121.com/analyse/wzs.
[4] 楼文娟, 余江, 潘小涛. 风力机叶片挥舞摆振气弹失稳分析[J]. 工程力学, 2015, 32(11): 236-242.
LOU W J, YU J, PAN X T.Calculating for aerodynamic stability response of wind turbine blade in flapwise and edgewise direction[J]. Engineering mechanics, 2015, 32(11): 236-242.
[5] 王景全, 陈政清. 试析海上风机在强台风下叶片受损风险与对策: 考察红海湾风电场的启示[J]. 中国工程科学, 2010, 12(11): 32-34.
WANG J Q, CHEN Z Q.Analysis of risks and measures on the blade damage of offshore wind turbine during strong typhoons: enlightenment from Red Bay wind farm[J]. Engineering sciences, 2010, 12(11): 32-34.
[6] 陈佳慧, 王同光. 考虑气动弹性的风力机叶片性能分析[J]. 空气动力学学报, 2011, 29(3): 396-400.
CHEN J H, WANG T G.Wind turbine performance analysis with aeroelastic effect[J]. Acta aerodynamica sinica, 2011, 29(3): 396-400.
[7] 赵鹰, 廖猜猜, 秦志文, 等. 基于高精度有限元模型的叶片气弹耦合分析[J]. 工程热物理学报, 2017, 38(4): 748-753.
ZHAO Y, LIAO C C, QIN Z W, et al.Aeroelastic coupling analysis of blades based on high precision finite element model[J]. Journal of engineering thermophysics, 2017, 38(4): 748-753.
[8] 吕品, 廖明夫, 尹尧杰. 大型风力机叶片非线性流固耦合模型[J]. 太阳能学报, 2017, 38(8): 2126-2135.
LYU P, LIAO M F, YIN Y J.A structural-aerodynamic coupled method for nonlinear aeroelastic response of large-scaled hawt[J]. Acta energiae solaris sinica, 2017, 38(8): 2126-2135.
[9] 杨斌, 戴丽萍, 王晓东, 等. 大型风力机叶片非线性气弹模型[J]. 工程热物理学报, 2021, 42(3): 626-632.
YANG B, DAI L P, WANG X D, et al.Nonlinear aeroelastic model of large wind turbine blades[J]. Journal of engineering thermophysics, 2021, 42(3): 626-632.
[10] LEE Y J, JHAN Y T, CHUNG C H.Fluid-structure interaction of FRP wind turbine blades under aerodynamic effect[J]. Composites part B: engineering, 2012, 43(5): 2180-2191.
[11] GUO T Q, LU Z L, TANG D, et al.A CFD/CSD model for aeroelastic calculations of large-scale wind turbines[J]. Science China technological sciences, 2013, 56(1): 205-211.
[12] DAI L P, ZHOU Q, ZHANG Y W, et al.Analysis of wind turbine blades aeroelastic performance under yaw conditions[J]. Journal of wind engineering and industrial aerodynamics, 2017, 171: 273-287.
[13] SAYED M, LUTZ T, KRÄMER E, et al. Aeroelastic analysis of 10 MW wind turbine using CFD-CSD explicit FSI-coupling approach[J]. Journal of fluids and structures, 2019, 87: 354-377.
[14] 李媛, 康顺, 王建录, 等. 2.5 MW风力机叶片流固耦合数值模拟[J]. 工程热物理学报, 2013, 34(1): 71-74.
LI Y, KANG S, WANG J L, et al.Numerical simulation of fluid-structure coupling of 2.5 MW wind turbine blades[J]. Journal of engineering thermophysics, 2013, 34(1): 71-74.
[15] 刘海锋, 孙凯, 胡丹梅. 大型风力机尾迹双向流固耦合特性分析[J]. 可再生能源, 2015, 33(11): 1664-1673.
LIU H F, SUN K, HU D M.Characteristic analysis of large wind turbine wake on two-way fluid-structure interaction[J]. Renewable energy resources, 2015, 33(11): 1664-1673.
[16] 赵元星, 汪建文, 白叶飞, 等. 切变来流下风力机叶片应力耦合性分析[J]. 工程热物理学报, 2019, 40(11): 2574-2581.
ZHAO Y X, WANG J W, BAI Y F, et al.Stress coupling analysis of wind turbine blades under wind shear flow[J]. Journal of engineering thermophysics, 2019, 40(11): 2574-2581.
[17] 宋力, 党永利, 谢晓凤, 等. 基于流固耦合的风力机叶片模拟分析[J]. 可再生能源, 2019, 37(10): 1546-1550.
SONG L, DANG Y L, XIE X F, et al.Wind turbine blade simulation analysis based on fluid-solid coupling[J]. Renewable energy resources, 2019, 37(10): 1546-1550.
[18] 柯世堂, 陆曼曼, 吴鸿鑫, 等. 基于风洞试验15 MW风力机叶片颤振后形态与能量图谱研究[J]. 空气动力学学报, 2022, 40(4): 169-180, 168.
KE S T, LU M M, WU H X, et al.Experimental study on the post-flutter morphological chracteristics and energy dissipation of a 15 MW wind turbine blade[J]. Acta aerodynamica sinica, 2022, 40(4): 169-180, 168.
[19] 周兴. 大气边界层实验模拟及水平轴风力机叶片动力学特性实验研究[D]. 武汉: 华中科技大学, 2016.
ZHOU X.ABL experimental simulation and research on dynamic characteristics of horizontal axis wind turbine blade[D]. Wuhan: Huazhong University of Science and Technology, 2016.
[20] 潘月月, 李正农, 徐海华, 等. 沿海滩涂风力机近尾流风速分布特性研究[J]. 太阳能学报, 2022, 43(9): 193-201.
PAN Y Y, LI Z N, XU H H, et al.Near wake wind velocity distribution characteristics of wind turbine on coastal beach[J]. Acta energiae solaris sinica, 2022, 43(9): 193-201.
[21] LI Z N, PU O, PAN Y Y, et al.A study on measuring wind turbine wake based on UAV anemometry system[J]. Sustainable energy technologies and assessments, 2022, 53: 102537.
[22] GB 50009—2012, 建筑结构荷载规范[S].
GB 50009—2012, Load code for the design of building structures[S].
[23] 胡丹梅, 张志超, 孙凯, 等. 风力机叶片流固耦合计算分析[J]. 中国电机工程学报, 2013, 33(17): 98-104, 18.
HU D M, ZHANG Z C, SUN K, et al.Computational analysis of wind turbine blades based on fluid-structure interaction[J]. Proceedings of the CSEE, 2013, 33(17): 98-104, 18.
[24] 李德顺, 朱莹. 来流条件对风力机叶片流固耦合特性影响研究[J]. 液压气动与密封, 2022, 42(5): 17-24.
LI D S, ZHU Y.The effect of wind shear on wind turbine blades fluid-structure coupling characteristics[J]. Hydraulics pneumatics & seals, 2022, 42(5): 17-24.
[25] ZHANG W, MARKFORT C D, PORTÉ-AGEL F.Near-wake flow structure downwind of a wind turbine in a turbulent boundary layer[J]. Experiments in fluids, 2012, 52(5): 1219-1235.
[26] 朱莹. 来流条件对风力机叶片流固耦合动力响应特性的影响[D]. 兰州: 兰州理工大学, 2021.
ZHU Y.Fluid-structure interaction dynamic response of wind turbine with influence of inflow conditions[D]. Lanzhou: Lanzhou University of Technology, 2021.
[27] 刘鑫, 闫姝, 郭雨桐, 等. 复杂地形下风力机尾流数值模拟研究和激光雷达实验对比[J]. 太阳能学报, 2020, 41(3): 1-7.
LIU X, YAN S, GUO Y T, et al.Cfd simulation and lidar experimental study on wind turbines in complex terrain[J]. Acta energiae solaris sinica, 2020, 41(3): 1-7.
[28] YE J J, CHU C C, CAI H, et al.A multi-scale model for studying failure mechanisms of composite wind turbine blades[J]. Composite structures, 2019, 212: 220-229.
[29] 李正农, 朱胜兵, 潘月月. 考虑结冰质量与刚度影响对风力机叶片模态分析[J]. 玻璃钢/复合材料, 2018(10): 82-89, 19.
LI Z N, ZHU S B, PAN Y Y.Research about the effect of icing stiffness and mass on the mode of large wind turbine blade[J]. Fiber reinforced plastics/composites, 2018(10): 82-89, 19.
[30] 赵元星. 气动载荷影响下风力机叶片动态应力特性研究[D]. 呼和浩特: 内蒙古工业大学, 2021.
ZHAO Y X.Research on dynamic stress characteristics of wind turbine blade under aerodynamic load[D]. Hohhot: Inner Mongolia University of Tehchnology, 2021.
[31] 姚世刚, 戴丽萍, 康顺. 风力机叶片气动性能及流固耦合分析[J]. 工程热物理学报, 2016, 37(5): 988-992.
YAO S G, DAI L P, KANG S.Aerodynamic performance and fluid-structure coupling analysis of wind turbine blades[J]. Journal of engineering thermophysics, 2016, 37(5): 988-992.
PDF(3490 KB)

Accesses

Citation

Detail

Sections
Recommended

/