INFLUENCE OF TEMPERATURE ON PYROLYSIS LAW AND PRODUCT DISTRIBUTION OF WASTE BIOMASS

Liu Peng, Li Xueqin, Li Yanling, Sun Tanglei, Yang Yantao, Lei Tingzhou

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (7) : 745-750.

PDF(1709 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1709 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (7) : 745-750. DOI: 10.19912/j.0254-0096.tynxb.2023-0172

INFLUENCE OF TEMPERATURE ON PYROLYSIS LAW AND PRODUCT DISTRIBUTION OF WASTE BIOMASS

  • Liu Peng1, Li Xueqin1,2, Li Yanling1, Sun Tanglei1, Yang Yantao1, Lei Tingzhou1
Author information +
History +

Abstract

In order to explore the pyrolysis law and product distribution of waste biomass, take in different materials (pine, sludge and domestic garbage) as the research object, the change law of pyrolysis performance of different biomass under continuous heating was studied by using first-order fixed-bed reaction system. The results show that high temperature promoted the pyrolysis of biomass, increased the yield of pyrolysis gas and reduced the tar yield. Especially, the pyrolysis process of pine was significantly affected by the change of temperature. After high temperature pyrolysis, the tar compound distribution of pine, sludge and domestic garbage had obviously different, in which there was no acid in the pyrolysis oil of pine. The proportion of phenols and alcohols increased significantly, while the proportion of ketones changed little. Furthermore, the feasibility of preparing high value gas by biomass pyrolysis was demonstrated through different indexes. It is concluded that biomass pyrolysis gas has good synergism and good application prospect, which is an important direction of high value utilization of biomass and an important way to produce green hydrogen. It lays a solid foundation for the preparation and utilization of hydrogen rich-gas by catalytic pyrolysis of biomass.

Key words

biomass energy / waste biomass / pyrolysis law / product distribution / high value gas / efficient utilization

Cite this article

Download Citations
Liu Peng, Li Xueqin, Li Yanling, Sun Tanglei, Yang Yantao, Lei Tingzhou. INFLUENCE OF TEMPERATURE ON PYROLYSIS LAW AND PRODUCT DISTRIBUTION OF WASTE BIOMASS[J]. Acta Energiae Solaris Sinica. 2024, 45(7): 745-750 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0172

References

[1] 袁振宏, 雷廷宙, 庄新姝, 等. 我国生物质能研究现状及未来发展趋势分析[J]. 太阳能, 2017(2): 12-19, 28.
YUAN Z H, LEI T Z, ZHUANG X S, et al.Research status and future development trend of biomass energy in China[J]. Solar energy, 2017(2): 12-19, 28.
[2] 曾妍. “十四五” 时期我国可再生能源发展将进入新阶段[J]. 天然气与石油, 2021, 39(2): 112.
ZENG Y.China's renewable energy development will enter a new stage during the “14th Five-Year Plan” period[J]. Natural gas and oil, 2021, 39(2): 112.
[3] 王晶, 李湘昀, 李文杰. 清洁基金:支持生物质能行业发展[J]. 中国财政, 2022(15): 87-88.
WANG J, LI X Y, LI W J.Clean fund: supporting the development of biomass energy industry[J]. China state finance, 2022(15): 87-88.
[4] 梁志松, 何楠, 周旺, 等. 双碳目标下生物质能发展现状及应用路径研究[J]. 科技视界, 2022(18): 5-7.
LIANG Z S, HE N, ZHOU W, et al.Research on development status and application path of biomass energy under double carbon target[J]. Science & technology vision, 2022(18): 5-7.
[5] 肖洋, 刘海峰, 李娜. 生物质能的开发与利用[J]. 湖北农机化, 2020(9): 44-45.
XIAO Y, LIU H F, LI N.Development and utilization of biomass energy[J]. Hubei agricultural mechanization, 2020(9): 44-45.
[6] 程序. 生物质独特的负碳排放作用[EB/OL]. https://mp.weixin.qq.com/s/FB-Gn6zGFmneYCQZKjKJjA.
CHENG X.The unique negative carbon emission effect of biomass[EB/OL]. https://mp.weixin.qq.com/s/FB-Gn6zGFmneYCQZKjKJjA.
[7] CHEN W D, GENG W X.Fossil energy saving and CO2 emissions reduction performance, and dynamic change in performance considering renewable energy input[J]. Energy, 2017, 120: 283-292.
[8] 王志伟, 雷廷宙, 陈高峰, 等. 瑞典生物质能发展状况及经验借鉴[J]. 可再生能源, 2019, 37(4): 488-494.
WANG Z W, LEI T Z, CHEN G F, et al.Biomass energy development status and referential experience in Sweden[J]. Renewable energy resources, 2019, 37(4): 488-494.
[9] 王芳, 刘晓风, 陈伦刚, 等. 生物质资源能源化与高值利用研究现状及发展前景[J]. 农业工程学报, 2021, 37(18): 219-231.
WANG F, LIU X F, CHEN L G, et al.Research status and development prospect of energy and high value utilization of biomass resources[J]. Transactions of the Chinese society of agricultural engineering, 2021, 37(18): 219-231.
[10] CAPUTO A C, PALUMBO M, PELAGAGGE P M, et al.Economics of biomass energy utilization in combustion and gasification plants: effects of logistic variables[J]. Biomass and bioenergy, 2005, 28(1): 35-51.
[11] AHMAD A A, ZAWAWI N A, KASIM F H, et al.Assessing the gasification performance of biomass: a review on biomass gasification process conditions, optimization and economic evaluation[J]. Renewable and sustainable energy reviews, 2016, 53: 1333-1347.
[12] ASADULLAH M.Biomass gasification gas cleaning for downstream applications: a comparative critical review[J]. Renewable and sustainable energy reviews, 2014, 40: 118-132.
[13] FASSINOU W F, VAN DE STEENE L, TOURE S, et al. Pyrolysis of Pinus pinaster in a two-stage gasifier: influence of processing parameters and thermal cracking of tar[J]. Fuel processing technology, 2009, 90(1): 75-90.
[14] FONT PALMA C.Modelling of tar formation and evolution for biomass gasification: a review[J]. Applied energy, 2013, 111: 129-141.
[15] FAGBEMI L.Pyrolysis products from different biomasses: application to the thermal cracking of tar[J]. Fuel and energy abstracts, 2002, 43(4): 279.
[16] BRANDT P, HENRIKSEN U.Decomposition of tar in gas from updraft gasifier by thermal cracking[C]//1st World Conference on Biomass for Energy and Industry, Seville, Spain, 2000.
[17] KUMAR A, JONES D, HANNA M.Thermochemical biomass gasification: a review of the current status of the technology[J]. Energies, 2009, 2(3): 556-581.
[18] SHARYPOV V I, MARIN N, BEREGOVTSOVA N G, et al.Co-pyrolysis of wood biomass and synthetic polymer mixtures. Part I: influence of experimental conditions on the evolution of solids, liquids and gases[J]. Journal of analytical and applied pyrolysis, 2002, 64(1): 15-28.
[19] 袁浩然, 鲁涛, 熊祖鸿, 等. 城市生活垃圾热解气化技术研究进展[J]. 化工进展, 2012, 31(2): 421-427.
YUAN H R, LU T, XIONG Z H, et al.Advance in pyrolysis and gasification of municipal solid waste study[J]. Chemical industry and engineering progress, 2012, 31(2): 421-427.
[20] CHEN H P, LIU Z H, CHEN X, et al.Comparative pyrolysis behaviors of stalk, wood and shell biomass: correlation of cellulose crystallinity and reaction kinetics[J]. Bioresource technology, 2020, 310: 123498.
[21] 陈登宇, 陈凡, 岑珂慧, 等. 烘焙预处理对木屑成型燃料理化性质及热解特性的影响[J]. 能源研究与利用, 2021(2): 20-24.
CHEN D Y, CHEN F, CEN K H, et al.Effect of baking pretreatment on physical and chemical properties and pyrolysis characteristics of Chinese fir briquette[J]. Energy research & utilization, 2021(2): 20-24.
[22] ZAMAN K, MOEMEN M A E. Energy consumption, carbon dioxide emissions and economic development: evaluating alternative and plausible environmental hypothesis for sustainable growth[J]. Renewable and sustainable energy reviews, 2017, 74: 1119-1130.
[23] SHER F, PANS M A, SUN C G, et al.Oxy-fuel combustion study of biomass fuels in a 20 kWth fluidized bed combustor[J]. Fuel, 2018, 215: 778-786.
[24] PANWAR N L, KAUSHIK S C, KOTHARI S.Role of renewable energy sources in environmental protection: a review[J]. Renewable and sustainable energy reviews, 2011, 15(3): 1513-1524.
[25] GUO S H, WANG Z W, CHEN G F, et al.Catalytic co-pyrolysis of poplar tree and polystyrene with HZSM-5 and Fe/HZSM-5 for production of light aromatic hydrocarbons[J]. Energy, 2024, 298: 131433.
[26] SAAD J M, WILLIAMS P T.Pyrolysis-catalytic dry (CO2) reforming of waste plastics for syngas production: influence of process parameters[J]. Fuel, 2017, 193: 7-14.
[27] LI X Q, LIU P, LEI T Z, et al.Pyrolysis of biomass Tar model compound with various Ni-based catalysts: influence of promoters characteristics on hydrogen-rich gas formation[J]. Energy, 2022, 244: 123137.
[28] LI X Q, LIU P, CHEN W X, et al.Catalytic pyrolysis of toluene as biomass tar model component using Ni/HZSM-5 modified by CeO2 and MgO promoters[J]. Journal of analytical and applied pyrolysis, 2022, 162: 105436.
[29] 张辰宇. 基于常见农林废弃生物质原料的热解技术及机理研究[D]. 北京: 北京化工大学, 2013.
ZHANG C Y.Study on pyrolysis technology and mechanism of common agricultural and forestry waste biomass materials[D]. Beijing: Beijing University of Chemical Technology, 2013.
[30] 姚倩, 徐禄江, 张颖. 催化快速热解生物质制备高附加值化学品研究进展[J]. 林产化学与工业, 2015, 35(4): 138-144.
YAO Q, XU L J, ZHANG Y.Production of high value-added chemicals by catalytic fast pyrolysis of biomass[J]. Chemistry and industry of forest products, 2015, 35(4): 138-144.
[31] 武宏香, 刘安琪, 李兰兰, 等. 钾对松木热解特性影响实验研究[J]. 燃料化学学报, 2014, 42(4): 420-426.
WU H X, LIU A Q, LI L L, et al.Effects of potassium on pyrolysis characteristics of pine[J]. Journal of fuel chemistry and technology, 2014, 42(4): 420-426.
[32] 陈祎, 陆杰, 杨明辉, 等. 典型生物质在不同温度下的热解产物特性[J]. 工业加热, 2019, 48(1): 5-10.
CHEN Y, LU J, YANG M H, et al.Characteristics of purolysis products of typical biomass at different temperatures[J]. Industrial heating, 2019, 48(1): 5-10.
[33] CYPRES R, BETTENS B.Mecanismes de fragmentation pyrolytique du phenol et des cresols[J]. Tetrahedron, 1974, 30(10): 1253-1260.
[34] 郎盼盼, 刘鹏, 李艳玲, 等. 不同木屑类生物质热解动力学与热力学参数研究[J]. 林产工业, 2022, 59(7): 30-37, 52.
LANG P P, LIU P, LI Y L, et al.Study on kinetics and thermodynamic parameters for pyrolysis of different sawdust biomass[J]. China forest products industry, 2022, 59(7): 30-37, 52.
[35] 陈文轩, 刘鹏, 李学琴, 等. 生物质焦油催化裂解催化剂的研究进展[J]. 林产工业, 2022, 59(3): 41-48.
CHEN W X, LIU P, LI X Q, et al.Research progress of catalytic cracking catalysts for biomass tar[J]. China forest products industry, 2022, 59(3): 41-48.
[36] HUANG Y Q, WEI Z G, QIU Z J, et al.Study on structure and pyrolysis behavior of lignin derived from corncob acid hydrolysis residue[J]. Journal of analytical and applied pyrolysis, 2012, 93: 153-159.
[37] 严军. 生物质固体燃料高效气化技术的研究[D]. 西宁: 青海大学, 2012.
YAN J.Study on efficient gasification technology of biomass solid fuel[D]. Xining: Qinghai University, 2012.
[38] 李海英, 张书廷, 赵新华. 城市污水污泥热解温度对产物分布的影响[J]. 太阳能学报, 2006, 27(8): 835-840.
LI H Y, ZHANG S T, ZHAO X H.Influence of pyrogenation temperature of sewage sludge on product distribution[J]. Acta energiae solaris sinica, 2006, 27(8): 835-840.
PDF(1709 KB)

Accesses

Citation

Detail

Sections
Recommended

/