RESEARCH ON ENERGY MANAGEMENT OF WIND-HYDROGEN COUPLING SYSTEM BASED ON PEM ELECTROLYZER

Liu Guoyong, Ren Yongfeng, Xue Yu, Yang Pengwei, Ren Zheng, Zheng Bowen

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (7) : 240-248.

PDF(2193 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2193 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (7) : 240-248. DOI: 10.19912/j.0254-0096.tynxb.2023-0182

RESEARCH ON ENERGY MANAGEMENT OF WIND-HYDROGEN COUPLING SYSTEM BASED ON PEM ELECTROLYZER

  • Liu Guoyong1, Ren Yongfeng1, Xue Yu2, Yang Pengwei3, Ren Zheng3, Zheng Bowen3
Author information +
History +

Abstract

Around the diversified utilization of distributed wind power, implement the rapid development of green electricity-green hydrogen low carbon economy, An integrated wind-hydrogen coupling system including permanent magnet synchronous direct-drive wind turbines, PEM electrolyzer, high-pressure hydrogen storage tanks and hydrogen fuel cells coupled to AC buses has been constructed. According to the physical constraints of each unit and the typical operating scenario mode, a wind-hydrogen coupled energy management strategy with nine operating conditions is proposed, which enables the power difference between the distributed wind power and the load demand to be completely absorbed or compensated by the PEM electrolyzer or the fuel cell, and ensures the power dynamic balance of the distributed wind power system. The simulation results show that the proposed energy management strategy can effectively coordinate the power flow between the distributed wind power and electrolyzer and the load, and ensure the coordinated and stable operation of the wind-hydrogen coupled integrated system at multiple time scales.

Key words

electrolyzer / fuel cell / energy management / distributed wind power / hydrogen storage

Cite this article

Download Citations
Liu Guoyong, Ren Yongfeng, Xue Yu, Yang Pengwei, Ren Zheng, Zheng Bowen. RESEARCH ON ENERGY MANAGEMENT OF WIND-HYDROGEN COUPLING SYSTEM BASED ON PEM ELECTROLYZER[J]. Acta Energiae Solaris Sinica. 2024, 45(7): 240-248 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0182

References

[1] 中华人民共和国国家发展和改革委员会. 氢能产业发展中长期规划(2021-2035年)[EB/OL]. [2022-03-23]. https://www.ndrc.gov.cn/xxgk/zcfb/ghwb/202203/P020220323314396580505.pdf.
Medium and long-term plan for the development of hydrogen energy industry (2021-2035)[EB/OL]. [2022-03-23].
[2] 孙彩, 李奇, 邱宜彬, 等. 余电上网/制氢方式下微电网系统全生命周期经济性评估[J]. 电网技术, 2021, 45(12): 4650-4660.
SUN C, LI Q, QIU Y B, et al.Economic evaluation of whole life cycle of the micro-grid system under the mode of residual power connection/hydrogen production[J]. Power system technology, 2021, 45(12): 4650-4660.
[3] 曹蕃, 郭婷婷, 陈坤洋, 等. 风电耦合制氢技术进展与发展前景[J]. 中国电机工程学报, 2021, 41(6): 2187-2201.
CAO F, GUO T T, CHEN K Y, et al.Progress and development prospect of coupled wind and hydrogen systems[J]. Proceedings of the CSEE, 2021, 41(6): 2187-2201.
[4] 李建林, 郭兆东, 马速良, 等. 新型电力系统下“源网荷储” 架构与评估体系综述[J]. 高电压技术, 2022, 48(11): 4330-4342.
LI J L, GUO Z D, MA S L, et al.Overview of the “source-grid-load-storage” architecture and evaluation system under the new power system[J]. High voltage engineering, 2022, 48(11): 4330-4342.
[5] 姜海洋, 杜尔顺, 朱桂萍, 等. 面向高比例可再生能源电力系统的季节性储能综述与展望[J]. 电力系统自动化, 2020, 44(19): 194-207.
JIANG H Y, DU E S, ZHU G P, et al.Review and prospect of seasonal energy storage for power system with high proportion of renewable energy[J]. Automation of electric power systems, 2020, 44(19): 194-207.
[6] 丁剑, 方晓松, 宋云亭, 等. 碳中和背景下西部新能源传输的电氢综合能源网构想[J]. 电力系统自动化, 2021, 45(24): 1-9.
DING J, FANG X S, SONG Y T, et al.Conception of electricity and hydrogen integrated energy network for renewable energy transmission in Western China under background of carbon neutralization[J]. Automation of electric power systems, 2021, 45(24): 1-9.
[7] 张红, 袁铁江, 谭捷, 等. 面向统一能源系统的氢能规划框架[J]. 中国电机工程学报, 2022, 42(1): 83-94.
ZHANG H, YUAN T J, TAN J, et al.Hydrogen energy system planning framework for unified energy system[J]. Proceedings of the CSEE, 2022, 42(1): 83-94.
[8] 薛宇, 任永峰, 胡志帅, 等. 基于九开关变换器的直驱-双馈分散式风电系统控制策略[J]. 电力系统自动化, 2022, 46(7): 152-159.
XUE Y, REN Y F, HU Z S, et al.Control strategy of direct drive-doubly fed distributed wind power system based on nine-switch converter[J]. Automation of electric power systems, 2022, 46(7): 152-159.
[9] 邓浩, 陈洁, 焦东东, 等. 风氢耦合并网系统能量管理控制策略[J]. 高电压技术, 2020, 46(1): 99-106.
DENG H, CHEN J, JIAO D D, et al.Control strategy for energy management of hybrid grid-connected system of wind and hydrogen[J]. High voltage engineering, 2020, 46(1): 99-106.
[10] 卢捷, 于立军, 郑培, 等. 风氢耦合系统超前控制策略研究[J]. 太阳能学报, 2022, 43(3): 53-60.
LU J, YU L J, ZHENG P, et al.Research on advanced control strategy of wind hydrogen coupling system[J]. Acta energiae solaris sinica, 2022, 43(3): 53-60.
[11] 袁铁江, 曹继雷. 计及风电-负荷不确定性的风氢低碳能源系统容量优化配置[J]. 高电压技术, 2022, 48(6): 2037-2044.
YUAN T J, CAO J L.Capacity optimization allocation of wind hydrogen low-carbon energy system considering wind power-load uncertainty[J]. High voltage engineering, 2022, 48(6): 2037-2044.
[12] 邵志芳, 吴继兰. 基于动态电价风光电制氢容量配置优化[J]. 太阳能学报, 2020, 41(8): 227-235.
SHAO Z F, WU J L.Capacity configuration optimization of hydrogen production from wind and PV power based on dynamic electricity price[J]. Acta energiae solaris sinica, 2020, 41(8): 227-235.
[13] DENG Z H, JIANG Y W.Optimal sizing of wind-hydrogen system considering hydrogen demand and trading modes[J]. International journal of hydrogen energy, 2020, 45(20): 11527-11537.
[14] LIN H Y, WU Q W, CHEN X Y, et al.Economic and technological feasibility of using power-to-hydrogen technology under higher wind penetration in China[J]. Renewable energy, 2021, 173: 569-580.
[15] 帅逸轩, 赵培轩, 刘慧敏, 等. 基于多功率耦合的风光互补制氢系统容量配置优化方法[J]. 太阳能学报, 2022, 43(11): 474-481.
SHUAI Y X, ZHAO P X, LIU H M, et al.Optimization of battery capacity for wind-solar complementary hydrogen production system under multi-power conditions[J]. Acta energiae solaris sinica, 2022, 43(11): 474-481.
[16] 王金鑫, 任永峰, 孟庆天, 等. 自抗扰控制的九开关变换器提升分散式风电系统电能质量[J]. 高电压技术, 2023, 49(12): 5207-5216.
WANG J X, REN Y F, MENG Q T, et al.Nine-switch converter with active disturbance rejection control to lmprove power quality of distributed wind power system[J]. High voltage engineering, 2023, 49(12): 5207-5216.
[17] MA Z W, WITTEMAN L, WRUBEL J A, et al.A comprehensive modeling method for proton exchange membrane electrolyzer development[J]. International journal of hydrogen energy, 2021, 46(34): 17627-17643.
[18] 李建林, 张则栋, 李光辉, 等. 基于模型层级分析的质子交换膜电解槽建模研究进展[J]. 高电压技术, 2023, 49(3): 1105-1117.
LI J L, ZHANG Z D, LI G H, et al.Research on modeling of proton exchange membrane electrolyzer based on model hierarchical analysis[J]. High voltage engineering, 2023, 49(3): 1105-1117.
[19] 卢昕宇, 杜帮华, 赵波, 等. 基于链式分配策略的风氢耦合系统设计与控制[J]. 太阳能学报, 2022, 43(6): 405-413.
LU X Y, DU B H, ZHAO B, et al.Design and control of wind-hydrogen coupled system based on chain distribution strategy[J]. Acta energiae solaris sinica, 2022, 43(6): 405-413.
[20] YAN C Z, CHEN J, LIU H, et al.Health management for PEM fuel cells based on an active fault tolerant control strategy[J]. IEEE transactions on sustainable energy, 2021, 12(2): 1311-1320.
[21] WU X, LI H Y, WANG X L, et al.Cooperative operation for wind turbines and hydrogen fueling stations with on-site hydrogen production[J]. IEEE transactions on sustainable energy, 2020, 11(4): 2775-2789.
PDF(2193 KB)

Accesses

Citation

Detail

Sections
Recommended

/