REMAINING USEFUL LIFE PREDICTION OF WIND TURBINE BLADES BASED ON OPTIMIZED LSTM MODEL

Jiao Jiaming, Bi Junxi, Ge Xinyu, Wang Guofu, Ma Hang, Zhou Dachuan

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (6) : 495-502.

PDF(1971 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1971 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (6) : 495-502. DOI: 10.19912/j.0254-0096.tynxb.2023-0215

REMAINING USEFUL LIFE PREDICTION OF WIND TURBINE BLADES BASED ON OPTIMIZED LSTM MODEL

  • Jiao Jiaming1,Bi Junxi1~3,Ge Xinyu1,Wang Guofu1,Ma Hang2,Zhou Dachuan2
Author information +
History +

Abstract

Aiming at the problems of complex calculation, time consuming and inapplicability of traditional life prediction methods, a wind turbine blade remaining useful life (RUL) prediction model based on optimized Long Short-Term Memory (LSTM) is proposed. In this study, the multidimensional sensor monitoring data were visualized to observe the data features and perform initial feature screening. Then, the filtered data were normalized and the data were fused using principal component analysis (PCA) to remove redundant information and reduce feature dimensionality. Furthermore, the adaptive moment estimation (AME) algorithm was employed to provide independent adaptive learning rates for different network parameters, and the smoothed mean absolute error (SMAE) loss function was utilized to synthesize the characteristics of two traditional regression loss functions. After several experiments, the optimal number of LSTM layers and neurons was selected. The model was experimentally validated using multi-scale time-series monitoring data of complex systems as an arithmetic example. The experimental results demonstrate that the optimized LSTM prediction model outperforms other traditional machine learning models in terms of evaluation index and prediction error distribution under one fault mode. This indicates that the proposed model offers higher accuracy and stability.

Key words

wind turbine blades / principal component analysis / Long short-term memory / life prediction / prediction model

Cite this article

Download Citations
Jiao Jiaming, Bi Junxi, Ge Xinyu, Wang Guofu, Ma Hang, Zhou Dachuan. REMAINING USEFUL LIFE PREDICTION OF WIND TURBINE BLADES BASED ON OPTIMIZED LSTM MODEL[J]. Acta Energiae Solaris Sinica. 2024, 45(6): 495-502 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0215

References

[1] EL-THALJI I, JANTUNEN E.On the development of condition based maintenance strategy for offshore wind farm: requirement elicitation process[J]. Energy procedia, 2012, 24: 328-339.
[2] CHOU J S, TU W T.Failure analysis and risk management of a collapsed large wind turbine tower[J]. Engineering failure analysis, 2011, 18(1): 295-313.
[3] 朱朔, 白瑞林, 吉峰. 改进CHSMM的滚动轴承剩余寿命预测方法[J]. 机械传动, 2018, 42(10): 46-52, 95.
ZHU S, BAI R L, JI F.Rolling bearing remaining useful life prognosis method based on improved CHSMM[J]. Journal of mechanical transmission, 2018, 42(10): 46-52, 95.
[4] 安宗文, 杨晓玺, 寇海霞, 等. 1.5 MW风电叶片多轴疲劳寿命分析[J]. 太阳能学报, 2020, 41(5): 129-135.
AN Z W, YANG X X, KOU H X, et al.Multi-axial fatigue life analysis of 1.5 MW wind turbine blades[J]. Acta energiae solaris sinica, 2020, 41(5): 129-135.
[5] 姜媛媛, 曾文文, 沈静静, 等. 基于凸优化-寿命参数退化机理模型的锂离子电池剩余使用寿命预测[J]. 电力系统及其自动化学报, 2019, 31(3): 23-28.
JIANG Y Y, ZENG W W, SHEN J J, et al.Prediction of remaining useful life of lithium-ion battery based on convex optimization-life parameter degradation mechanism model[J]. Proceedings of the CSU-EPSA, 2019, 31(3): 23-28.
[6] AGHAJANI S, HEMATI M, TORABNIA S.Life prediction of wind turbine blades using multi-scale damage model[J]. Journal of reinforced plastics and composites, 2021, 40(17/18): 644-653.
[7] 段桂英, 姜洪开. 基于数据融合驱动和DLSTM网络的轴承RUL预测[J]. 计算机应用与软件, 2021, 38(12): 22-29.
DUAN G Y, JIANG H K.Bearing RUL prediction based on data fusion drive and DLSTM network[J]. Computer applications and software, 2021, 38(12): 22-29.
[8] 马奇友, 刘可薇, 杜坚, 等. 基于深度长短期记忆网络的发动机叶片剩余寿命预测[J]. 推进技术, 2021, 42(8): 1888-1897.
MA Q Y, LIU K W, DU J, et al.Prediction of residual life of engine blades based on deep short term memory network[J]. Journal of propulsion technology, 2021, 42(8): 1888-1897.
[9] XIAO L, ZHANG L Y, NIU F, et al.RETRACTED: remaining useful life prediction of wind turbine generator based on 1D-CNN and Bi-LSTM[J]. International journal of fatigue, 2022, 163: 107051.
[10] HOCHREITER S, SCHMIDHUBER J.Long short-term memory[J]. Neural computation, 1997, 9(8): 1735-1780.
[11] 王颖洁, 朱久祺, 汪祖民, 等. 自然语言处理在文本情感分析领域应用综述[J]. 计算机应用, 2022, 42(4): 1011-1020.
WANG Y J, ZHU J Q, WANG Z M, et al.Review of applications of natural language processing in text sentiment analysis[J]. Journal of computer applications, 2022, 42(4): 1011-1020.
[12] 贾澎涛, 孙炜. 基于深度学习的文本分类综述[J]. 计算机与现代化, 2021(7): 29-37.
JIA P T, SUN W.A survey of text classification based on deep learning[J]. Computer and modernization, 2021(7): 29-37.
[13] 王雨嫣, 廖柏林, 彭晨, 等. 递归神经网络研究综述[J]. 吉首大学学报(自然科学版), 2021, 42(1): 41-48.
WANG Y Y, LIAO B L, PENG C, et al.Research review of recurrent neural networks[J]. Journal of Jishou University (natural sciences edition), 2021, 42(1): 41-48.
[14] KINGMA D P, BA J. Adam: a method for stochastic optimization[EB/OL].2014: arXiv: 1412.6980. http://arxiv.org/abs/1412.6980.pdf
[15] GIRSHICK R.Fast R-CNN[C]//2015 IEEE International Conference on Computer Vision (ICCV). Santiago, Chile, 2015: 1440-1448.
[16] ZHAO Z B, WU J Y, LI T F, et al.Challenges and opportunities of AI-enabled monitoring, diagnosis \& prognosis: a review[J]. Chinese journal of mechanical engineering, 2021, 34(1): 56.
[17] 李彦夫, 韩特. 基于深度学习的工业装备PHM研究综述[J]. 振动测试与诊断, 2022, 42(5): 835-847, 1029.
LI Y F, HAN T.Deep learning based industrial equipment prognostics and health management: a review[J]. Journal of vibration, measurement & diagnosis, 2022, 42(5): 835-847, 1029.
[18] 栗然, 马涛, 张潇, 等. 基于卷积长短期记忆神经网络的短期风功率预测[J]. 太阳能学报, 2021, 42(6): 304-311.
LI R, MA T, ZHANG X, et al.Short-term wind power prediction based on convolutional long-short-term memory neural networks[J]. Acta energiae solaris sinica, 2021, 42(6): 304-311.
[19] 王依宁, 解大, 王西田, 等. 基于PCA-LSTM模型的风电机网相互作用预测[J]. 中国电机工程学报, 2019, 39(14): 4070-4081.
WANG Y N, XIE D, WANG X T, et al.Prediction of interaction between grid and wind farms based on PCA-LSTM model[J]. Proceedings of the CSEE, 2019, 39(14): 4070-4081.
[20] YUAN M, WU Y T, LIN L.Fault diagnosis and remaining useful life estimation of aero engine using LSTM neural network[C]//2016 IEEE International Conference on Aircraft Utility Systems (AUS), Beijing, China, 2016: 135-140.
[21] ZHENG S, RISTOVSKI K, FARAHAT A, et al.Long Short-Term Memory Network for Remaining Useful Life estimation[C]//2017 IEEE International Conference on Prognostics and Health Management (ICPHM), Dallas, TX, USA, 2017: 88-95.
[22] MATHEW V, TOBY T, SINGH V, et al.Prediction of Remaining Useful Lifetime (RUL) of turbofan engine using machine learning[C]//2017 IEEE International Conference on Circuits and Systems(ICCS). Thiruvananthapuram, India, 2017: 306-311.
PDF(1971 KB)

Accesses

Citation

Detail

Sections
Recommended

/