NUMERICAL ANALYSIS OF HEAT DISSIPATION CHARACTERISTICS OF VAPOR CHAMBER OF PROTON EXCHANGE MEMBRANE FUEL CELL

Ge Zhijing, Zheng Dongming, Pei Donghao, Cao Jun

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (6) : 109-116.

PDF(2169 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2169 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (6) : 109-116. DOI: 10.19912/j.0254-0096.tynxb.2023-0228

NUMERICAL ANALYSIS OF HEAT DISSIPATION CHARACTERISTICS OF VAPOR CHAMBER OF PROTON EXCHANGE MEMBRANE FUEL CELL

  • Ge Zhijing, Zheng Dongming, Pei Donghao, Cao Jun
Author information +
History +

Abstract

Taking the ultra-thin vapor chamber for heat dissipation of the proton exchange membrane fuel cell stack as the research object, a three-dimensional steady-state numerical model was constructed by using the porous medium heat transfer model, laminar flow model and Brinkman equation, and the phase change mass transfer at the gas-liquid interface was determined by mass conservation. Steady-state characteristics of the ultra-thin vapor chamber under the normal working conditions of saturated with liquid wick were studied. The results show that the ultra-thin structure and the presence of the support column make the internal pressure drop larger. With the increase of convective heat transfer coefficient in the condensing section, the temperature difference increases first and then decreases, and the internal pressure drop also increases significantly. With the increase of heat flux density, the temperature uniformity first increases and then decreases, and the thermal resistance continues to decrease. The change of porosity has little effect on the equilibrium final state. The increase in permeability will greatly reduce the liquid pressure drop in the wick, which is beneficial to phase change circulation.

Key words

proton exchange membrane fuel cell / two phase flow / heat transfer / ultra-thin vapor chamber / numerical analysis

Cite this article

Download Citations
Ge Zhijing, Zheng Dongming, Pei Donghao, Cao Jun. NUMERICAL ANALYSIS OF HEAT DISSIPATION CHARACTERISTICS OF VAPOR CHAMBER OF PROTON EXCHANGE MEMBRANE FUEL CELL[J]. Acta Energiae Solaris Sinica. 2024, 45(6): 109-116 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0228

References

[1] 陶丽蓉, 刘煜, 孔红兵, 等. 质子交换膜燃料电池整车辅助散热系统设计建模及分析[J]. 太阳能学报, 2023, 44(4): 299-305.
TAO L R, LIU Y, KONG H B, et al.Design, modeling and analysis of auxiliary heat dissipation system for proton exchange membrane fuel cell vehicle[J]. Acta energiae solaris sinica, 2023, 44(4): 299-305.
[2] 孙术发, 任春龙, 杨洁, 等. 二次吹扫条件下PEMFC电堆冷启动特性实验研究[J]. 太阳能学报, 2021, 42(5): 54-59.
SUN S F, REN C L, YANG J, et al.Experimental study on cold boot characteristics of pemfc stack under twice-purge condition[J]. Acta energiae solaris sinica, 2021, 42(5): 54-59.
[3] LI W P, LI L J, CUI W Z, et al.Experimental investigation on the thermal performance of vapor chamber in a compound liquid cooling system[J]. International journal of heat and mass transfer, 2021, 170: 121026.
[4] 纪合超, 陈涛, 刘士华, 等. 质子交换膜燃料电池温度监控系统的设计与开发[J]. 太阳能学报, 2020, 41(11): 375-380.
JI H C, CHEN T, LIU S H, et al.Design and development of temperature monitoring system for proton exchange membrane fuel cells[J]. Acta energiae solaris sinica, 2020, 41(11): 375-380.
[5] MUNEESHWARAN M, LIN Y F, LIN L, et al.A parametric study on the performance of vapor chamber in association with pillar distribution[J]. Applied thermal engineering, 2022, 207: 118217.
[6] HUANG G W, LIU W Y, LUO Y Q, et al.Research and optimization design of limited internal cavity of ultra-thin vapor chamber[J]. International journal of heat and mass transfer, 2020, 148: 119101.
[7] HUANG Z, LI D Q, ZHAO J, et al.Thermal and hydraulic analysis of ultra-thin vapor chamber with copper columns considering Marangoni effect[J]. International journal of heat and mass transfer, 2022, 184: 122343.
[8] LUO Y H, TANG Y F, ZHANG X T, et al.A novel composite vapor chamber for battery thermal management system[J]. Energy conversion and management, 2022, 254: 115293.
[9] ZHAO J, HUANG Z P, JIAN B X, et al.Thermal performance enhancement of air-cooled proton exchange membrane fuel cells by vapor chambers[J]. Energy conversion and management, 2020, 213: 112830.
[10] YU J, LI Y, XIN Z F, et al.Experimental investigation on the thermal characteristics of ultrathin vapour chamber with in-plane bending[J]. Applied thermal engineering, 2022, 217: 119175.
[11] HUANG G W, LIU W Y, LUO Y Q, et al.A new ultra-thin vapor chamber with composite wick for thin electronic products[J]. International journal of thermal sciences, 2021, 170: 107145.
[12] 赵晶. 质子交换膜燃料电池热质传递特性研究[D]. 广州: 华南理工大学, 2021.
ZHAO J.Research on heat and mass transfer characteristics of proton exchange membrane fuel cell[D]. Guangzhou: South China University of Technology, 2021.
[13] 刘晗. 外部能量源作用下多孔介质相变传热传质耦合计算[D]. 哈尔滨: 哈尔滨工业大学, 2013.
LIU H.Coupling study of phase change heat and mass transfer in porous media during phase Change with outer energy[D]. Harbin: Harbin Institute of Technology, 2013.
[14] WU G D, LUO Y H, BAI P F, et al.Modeling and experimental analysis of an internally-cooled vapor chamber[J]. Energy conversion and management, 2021, 235: 114017.
[15] 黄豆, 贾力. 烧结铜粉吸液芯毛细性能研究[J]. 工程热物理学报, 2021, 42(2): 494-503.
HUANG D, JIA L.Study on the capillary performance of sintered copper powder wick[J]. Journal of engineering thermophysics, 2021, 42(2): 494-503.
[16] ZHAO J, JIAN Q F, HUANG Z P.Experimental study on heat transfer performance of vapor chambers with potential applications in thermal management of proton exchange membrane fuel cells[J]. Applied thermal engineering, 2020, 180: 115847.
[17] FERRANDI C, IORIZZO F, MAMELI M, et al.Lumped parameter model of sintered heat pipe: transient numerical analysis and validation[J]. Applied thermal engineering, 2013, 50(1): 1280-1290.
PDF(2169 KB)

Accesses

Citation

Detail

Sections
Recommended

/