DEFECTS-RICH Ru NANOPLATE DRIVED HIGHLY DISPERSED Pt ATOMS TO BOOST HYDROGEN EVOLUTION REACTION

Wang Qiansen, Cheng Qingqing, Li Jun, Yang Hui

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (9) : 14-19.

PDF(1721 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1721 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (9) : 14-19. DOI: 10.19912/j.0254-0096.tynxb.2023-0318

DEFECTS-RICH Ru NANOPLATE DRIVED HIGHLY DISPERSED Pt ATOMS TO BOOST HYDROGEN EVOLUTION REACTION

  • Wang Qiansen1,2, Cheng Qingqing1, Li Jun1, Yang Hui1,2
Author information +
History +

Abstract

Platinum (Pt) is the state-of-the-art electrocatalyst towards hydrogen evolution reaction (HER),but its atom-utilization efficiency and durability need to be further improved. In this work, we prepared the highly dispersed Pt atoms supported on defects-rich Ru nanoparticles substrate (Ru NPs@Pt) by substrate-enhanced electroless deposition method. The results of single electron paramagnetic resonance confirm the existence of the defects on Ru NPs substrate and the X-ray diffraction combined with transmission electron microscopy reveals the highly dispersed Pt atoms. Exchange current density of HER on the Ru NPs@Pt is up to 2.39 mA/cm2, which is significantly higher than that of commercial Pt/C, demonstrating the boosted HER intrinsic activity. Mass activity is as high as 32.34 A/mgPt that is 9.37 times higher than that of Pt/C at an overpotential of 50 mV. Significantly, the Ru NPs@Pt delivers the greatly enhanced durability in comparison with the Pt/C one even under the ultralow Pt loading (2 μg/cm2), indicating that the defects-rich Ru NPs substrate could improve the electrocatalytic activity and durability of Pt simultaneously.

Key words

electrocatalysis / hydrogen evolution reaction / defect / durability / Pt

Cite this article

Download Citations
Wang Qiansen, Cheng Qingqing, Li Jun, Yang Hui. DEFECTS-RICH Ru NANOPLATE DRIVED HIGHLY DISPERSED Pt ATOMS TO BOOST HYDROGEN EVOLUTION REACTION[J]. Acta Energiae Solaris Sinica. 2024, 45(9): 14-19 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0318

References

[1] JARAMILLO T F, JØRGENSEN K P, BONDE J, et al. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts[J]. Science, 2007, 317(5834): 100-102.
[2] WANG H, GAO L J.Recent developments in electrochemical hydrogen evolution reaction[J]. Current opinion in electrochemistry, 2018, 7: 7-14.
[3] WANG D Y, GONG M, CHOU H L, et al.Highly active and stable hybrid catalyst of cobalt-doped FeS2 nanosheets-carbon nanotubes for hydrogen evolution reaction[J]. Journal of the American chemical society, 2015, 137(4): 1587-1592.
[4] 张诚, 檀志恒, 晁怀颇. “双碳”背景下数据中心氢能应用的可行性研究[J]. 太阳能学报, 2022, 43(6): 327-334.
ZHANG C, TAN Z H, CHAO H P.Feasibility study of hydrogen energy application on data center under “carbon peaking and neutralization”background[J]. Acta energiae solaris sinica, 2022, 43(6): 327-334.
[5] 程庆庆, 陈驰, 邹亮亮, 等. 当前实用和未来发展Pt-非Pt氧还原电催化剂研究进展[J]. 太阳能学报, 2022, 43(6): 335-344.
CHENG Q Q, CHEN C, ZOU L L, et al.Advances in current practical and future development of Pt-Non-Pt oxygen reduction reaction electrocatalyst[J]. Acta energiae solaris sinica, 2022, 43(6): 335-344.
[6] DIGRASKAR R V, SAPNER V S, MALI S M, et al.CZTS decorated on graphene oxide as an efficient electrocatalyst for high-performance hydrogen evolution reaction[J]. ACS omega, 2019, 4(4): 7650-7657.
[7] PAUL R, ZHU L, CHEN H, et al.Recent advances in carbon-based metal-free electrocatalysts[J]. Advanced materials, 2019, 31(31): e1806403.
[8] ZHANG W, ZHENG W T.Single atom excels as the smallest functional material[J]. Advanced functional materials, 2016, 26(18): 2988-2993.
[9] FLYTZANI-STEPHANOPOULOS M, GATES B C.Atomically dispersed supported metal catalysts[J]. Annual review of chemical and biomolecular engineering, 2012, 3: 545-574.
[10] SHI Y T, ZHAO C Y, WEI H S, et al.Single-atom catalysis in mesoporous photovoltaics: the principle of utility maximization[J]. Advanced materials, 2014, 26(48): 8147-8153.
[11] SIBURIAN R, KONDO T, NAKAMURA J.Size control to a sub-nanometer scale in platinum catalysts on graphene[J]. The journal of physical chemistry C, 2013, 117(7): 3635-3645.
[12] GAO C, LOW J X, LONG R, et al.Heterogeneous single-atom photocatalysts: fundamentals and applications[J]. Chemical reviews, 2020, 120(21): 12175-12216.
[13] ZHANG Q Q, GUAN J Q.Single-atom catalysts for electrocatalytic applications[J]. Advanced functional materials, 2020, 30(31): 2000768.
[14] JI S F, CHEN Y J, WANG X L, et al.Chemical synthesis of single atomic site catalysts[J]. Chemical reviews, 2020, 120(21): 11900-11955.
[15] ZHU C Z, FU S F, SHI Q R, et al.Single-atom electrocatalysts[J]. Angewandte chemie (international Ed in English), 2017, 56(45): 13944-13960.
[16] LI X Y, RONG H P, ZHANG J T, et al.Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance[J]. Nano research, 2020, 13(7): 1842-1855.
[17] LIU J Y.Catalysis by supported single metal atoms[J]. ACS catalysis, 2017, 7(1): 34-59.
[18] LIU G L, ROBERTSON A W, LI M M J, et al. MoS2 monolayer catalyst doped with isolated Co atoms for the hydrodeoxygenation reaction[J]. Nature chemistry, 2017, 9(8): 810-816.
[19] HAN B, GUO Y L, HUANG Y K, et al.Strong metal-support interactions between Pt single atoms and TiO2[J]. Angewandte chemie (international Ed in English), 2020, 59(29): 11824-11829.
[20] CHENG X, LI Y H, ZHENG L R, et al.Highly active, stable oxidized platinum clusters as electrocatalysts for the hydrogen evolution reaction[J]. Energy & environmental science, 2017, 10(11): 2450-2458.
[21] LI M F, DUANMU K N, WAN C Z, et al.Single-atom tailoring of platinum nanocatalysts for high-performance multifunctional electrocatalysis[J]. Nature catalysis, 2019, 2(6): 495-503.
[22] CHENG Q Q, HU C G, WANG G L, et al.Carbon-defect-driven electroless deposition of Pt atomic clusters for highly efficient hydrogen evolution[J]. Journal of the American chemical society, 2020, 142(12): 5594-5601.
[23] SONG Y, JOHNSON D, PENG R, et al.A physical catalyst for the electrolysis of nitrogen to ammonia[J]. Science advances, 2018, 4(4): e1700336.
PDF(1721 KB)

Accesses

Citation

Detail

Sections
Recommended

/