RESEARCH ON SURFACE DEFECT DETECTION OF SOLAR CELL WITH IMPROVED YOLOv5 ALGORITHM

Peng Ziran, Zhang Yingqing, Xiao Shenping

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (6) : 368-375.

PDF(2475 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2475 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (6) : 368-375. DOI: 10.19912/j.0254-0096.tynxb.2023-0335

RESEARCH ON SURFACE DEFECT DETECTION OF SOLAR CELL WITH IMPROVED YOLOv5 ALGORITHM

  • Peng Ziran, Zhang Yingqing, Xiao Shenping
Author information +
History +

Abstract

To solve the surface defect problem of solar cells, the deep learning model YOLOv5 is optimized and improved. Firstly, in order to make full use of deep, shallow and original feature information and strengthen feature fusion, a feature pyramid network (ScFPN) with cross-connection structure is designed. Secondly, in order to strengthen the fusion of multiple receptive fields, the SPPFCSPC module is constructed based on SPPF, and different receptive fields are obtained through the maximum pooling layer, which improves the robustness of the algorithm for the defect detection of solar cells of different scales. Finally, ASD-IoU is used as the bounding loss function to improve the speed and precision of the bounding regression. The experimental results show that the improved YOLOv5 model mAP@(0.50-0.95) reaches 83.1%, and the average accuracy is increased by 3.3 percentage points compared with the YOLOv5 model, indicating that this model is more suitable for surface defect detection of solar cells.

Key words

deep learning / solar cell / defect / convolutional neural network / object detection / image processing

Cite this article

Download Citations
Peng Ziran, Zhang Yingqing, Xiao Shenping. RESEARCH ON SURFACE DEFECT DETECTION OF SOLAR CELL WITH IMPROVED YOLOv5 ALGORITHM[J]. Acta Energiae Solaris Sinica. 2024, 45(6): 368-375 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0335

References

[1] BROOKS W S M, LAMB D A, IRVINE S J C. IR reflectance imaging for crystalline Si solar cell crack detection[J]. IEEE journal of photovoltaics, 2015, 5(5): 1271-1275.
[2] 时亚涛, 戴芳, 杨畅民. 太阳能光伏电池缺陷检测[J]. 电子测量与仪器学报, 2020, 34(4): 157-164.
SHI Y T, DAI F, YANG C M.Defect detection of solar photovoltaic cell[J]. Journal of electronic measurement and instrumentation, 2020, 34(4): 157-164.
[3] 汪方斌, 张彦福, 王峰, 等. 光伏电池电致发光偏振图像融合与缺陷检测[J]. 电子测量技术, 2022, 45(19): 143-149.
WANG F B, ZHANG Y F, WANG F, et al.Photovoltaic cell electroluminescence polarization image fusion and defect detection[J]. Electronic measurement technology, 2022, 45(19): 143-149.
[4] 王宇, 孙智权, 赵不贿. 基于机器视觉的太阳能电池硅片隐裂检测[J]. 组合机床与自动化加工技术, 2019(12): 95-97, 102.
WANG Y, SUN Z Q, ZHAO B H.Silicon wafer crack detection of solar cells based on machine vision[J]. Modular machine tool & automatic manufacturing technique, 2019(12): 95-97, 102.
[5] 钱晓亮, 张鹤庆, 张焕龙, 等. 基于视觉显著性的太阳能电池片表面缺陷检测[J]. 仪器仪表学报, 2017, 38(7): 1570-1578.
QIAN X L, ZHANG H Q, ZHANG H L, et al.Solar cell surface defect detection based on visual saliency[J]. Chinese journal of scientific instrument, 2017, 38(7): 1570-1578.
[6] 刘磊, 王冲, 赵树旺, 等. 基于机器视觉的太阳能电池片缺陷检测技术的研究[J]. 电子测量与仪器学报, 2018, 32(10): 47-52.
LIU L, WANG C, ZHAO S W, et al.Research on solar cells defect detection technology based on machine vision[J]. Journal of electronic measurement and instrumentation, 2018, 32(10): 47-52.
[7] 蒋兴群, 刘波, 宋力, 等. 基于改进YOLO-v3的风力机叶片表面损伤检测识别[J]. 太阳能学报, 2023, 44(3): 212-217.
JIANG X Q, LIU B, SONG L, et al.Surface damage detection and recognition of wind turbine blade based on improved YOLO-v3[J]. Acta energiae solaris sinica, 2023, 44(3): 212-217.
[8] 周颖, 毛立, 张燕, 等. 改进CNN的太阳电池缺陷识别方法研究[J]. 太阳能学报, 2020, 41(12): 69-76.
ZHOU Y, MAO L, ZHANG Y, et al.Research on defect detection and classification for solar cells based on improved convolutional neural network[J]. Acta energiae solaris sinica, 2020, 41(12): 69-76.
[9] 王道累,李超,李明山, 等. 基于深度卷积神经网络的光伏组件热斑检测[J]. 太阳能学报, 2022, 43(1): 412-417.
WANG D L, LI C, LI M S, et al.Solar photovoltaic modules hot spot detection based on deep convolutional neural networks[J]. Acta energiae solaris sinica, 2022, 43(1): 412-417.
[10] WEI S Q, LI X X, DING S H, et al.Hotspots Infrared detection of photovoltaic modules based on Hough line transformation and Faster-RCNN approach[C]//2019 6th International Conference on Control, Decision and Information Technologies (CoDIT). Paris, France, 2019: 1266-1271.
[11] 张文彪, 马永华, 白晓静, 等. 基于改进Faster R-CNN的太阳能电池板缺陷识别[J]. 电网技术, 2022, 46(7): 2593-2600.
ZHANG W B, MA Y H, BAI X J, et al.Defect identification of solar panels using improved Faster R-CNN[J]. Power system technology, 2022, 46(7): 2593-2600.
[12] 高天洋. 基于卷积神经网络的太阳能电池板故障识别[D]. 北京: 华北电力大学, 2021.
GAO T Y.Fault identification of solar panels based on convolution neural networks[D]. Beijing: North China Electric Power University, 2021.
[13] 王文胜, 李继旺, 吴波, 等. 基于YOLOv5交通标志识别的智能车设计[J]. 国外电子测量技术, 2021, 40(10): 158-164.
WANG W S, LI J W, WU B, et al.Smart car design based on traffic sign recognition via YOLOv5[J]. Foreign electronic measurement technology, 2021, 40(10): 158-164.
[14] 吕禾丰, 陆华才. 基于YOLOv5算法的交通标志识别技术研究[J]. 电子测量与仪器学报, 2021, 35(10): 137-144.
LYU H F, LU H C.Research on traffic sign recognition technology based on YOLOv5 algorithm[J]. Journal of electronic measurement and instrumentation, 2021, 35(10): 137-144.
[15] 张宏群, 班勇苗, 郭玲玲, 等. 基于YOLOv5的遥感图像舰船的检测方法[J]. 电子测量技术, 2021, 44(8): 87-92.
ZHANG H Q, BAN Y M, GUO L L, et al.Detection method of remote sensing image ship based on YOLOv5[J]. Electronic measurement technology, 2021, 44(8): 87-92.
[16] 邱天衡, 王玲, 王鹏, 等. 基于改进YOLOv5的目标检测算法研究[J]. 计算机工程与应用, 2022, 58(13): 63-73.
QIU T H, WANG L, WANG P, et al.Research on object detection algorithm based on improved YOLOv5[J]. Computer engineering and applications, 2022, 58(13): 63-73.
PDF(2475 KB)

Accesses

Citation

Detail

Sections
Recommended

/