PREDICTION OF RESIDUAL LIFE OF LITHIUM ION BATTERY BASED ON MULTI-SCALE CNN WITH JUMP CONNECTIONCNN

Wu Shimiao, Wang Wenbo, Zhu Ting, Yu Min

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (7) : 199-208.

PDF(2126 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2126 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (7) : 199-208. DOI: 10.19912/j.0254-0096.tynxb.2023-0364

PREDICTION OF RESIDUAL LIFE OF LITHIUM ION BATTERY BASED ON MULTI-SCALE CNN WITH JUMP CONNECTIONCNN

  • Wu Shimiao, Wang Wenbo, Zhu Ting, Yu Min
Author information +
History +

Abstract

In order to make better use of the feature information obtained by all convolutional layers in convolutional neural networks (CNN), a prediction model for the remaining life of lithium-ion batteries based on jump-connected multi-scale CNN is proposed. The model takes the health factor of the battery as input, uses the multi-scale CNN model based on jump connection, simultaneously extracts the local feature information and global feature information of different scales of the health factor of the lithium-ion battery, and fuses all the local feature information and global feature information through the information fusion module, and finally outputs the predicted value of the remaining life. Experimental results show that the proposed method can predict the remaining life of lithium-ion batteries more accurately. Compared with the classical CNN method, Bi-LSTM method, EMD-LSTM method and VMD-GRU method, the root means square error (ERMSE) is reduced by 75.7%, 78.3%, 83.8% and 77.8%, respectively. Mean absolute error (EMAE) decreased by 80.7%, 80.9%, 86.8%, 82.3%, and mean absolute percentage error (EMAPE) decreased by 81.0%, 82.2%, 87.0% and 83.1%, respectively. The model determination coefficient (R2) increased by 17.4%, 23.2%, 44.5% and 25.8%, respectively.

Key words

lithium ion batteries / remaining service life / convolutional neural network / multi-scale feature fusion / health factor

Cite this article

Download Citations
Wu Shimiao, Wang Wenbo, Zhu Ting, Yu Min. PREDICTION OF RESIDUAL LIFE OF LITHIUM ION BATTERY BASED ON MULTI-SCALE CNN WITH JUMP CONNECTIONCNN[J]. Acta Energiae Solaris Sinica. 2024, 45(7): 199-208 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0364

References

[1] 何冰琛, 杨薛明, 王劲松, 等. 基于PCA-GPR的锂离子电池剩余使用寿命预测[J]. 太阳能学报, 2022, 43(5): 484-491.
HE B C, YANG X M, WANG J S, et al.Prediction of remaining useful life of lithium-ion batteries based on PCA-GPR[J]. Acta energiae solaris sinica, 2022, 43(5): 484-491.
[2] 张明军. 电池管理系统研究[J]. 通信电源技术, 2020, 37(1): 103-104.
ZHANG M J.Research on battery management system[J]. Telecom power technology, 2020, 37(1): 103-104.
[3] WAAG W, FLEISCHER C, SAUER D U.Critical review of the methods for monitoring of lithium-ion batteries in electric and hybrid vehicles[J]. Journal of power sources, 2014, 258: 321-339.
[4] RAIJMAKERS L H J, DANILOV D L, EICHEL R A, et al. A review on various temperature-indication methods for Li-ion batteries[J]. Applied energy, 2019, 240: 918-945.
[5] 李夔宁, 谢运成, 谢翌, 等. 基于电化学热耦合模型的富镍锂离子电池产热分析[J]. 储能科学与技术, 2021, 10(3): 1153-1162.
LI K N, XIE Y C, XIE Y, et al.Analysis of heat production of nickel-rich lithium-ion battery based on electrochemical thermal coupling model[J]. Energy storage science and technology, 2021, 10(3): 1153-1162.
[6] 王常虹, 董汉成, 凌明祥, 等. 车用锂离子电池剩余使用寿命预测方法[J]. 汽车工程, 2015, 37(4): 476-479.
WANG C H, DONG H C, LING M X, et al.Remaining useful life prediction of automotive lithium-ion battery[J]. Automotive engineering, 2015, 37(4): 476-479.
[7] XU T T, PENG Z, WU L F.A novel data-driven method for predicting the circulating capacity of lithium-ion battery under random variable current[J]. Energy, 2021, 218: 119530.
[8] ZHAO Q, QIN X L, ZHAO H B, et al.A novel prediction method based on the support vector regression for the remaining useful life of lithium-ion batteries[J]. Microelectronics reliability, 2018, 85: 99-108.
[9] ZHANG Y Z, XIONG R, HE H W, et al.Long short-term memory recurrent neural network for remaining useful life prediction of lithium-ion batteries[J]. IEEE transactions on vehicular technology, 2018, 67(7): 5695-5705.
[10] MA J, XU S, SHANG P C, et al.Cycle life test optimization for different Li-ion power battery formulations using a hybrid remaining-useful-life prediction method[J]. Applied energy, 2020, 262: 114490.
[11] 梁海峰, 袁芃, 高亚静. 基于CNN-Bi-LSTM网络的锂离子电池剩余使用寿命预测[J]. 电力自动化设备, 2021, 41(10): 213-219.
LIANG H F, YUAN P, GAO Y J.Remaining useful life prediction of lithium-ion battery based on CNN-Bi-LSTM network[J]. Electric power automation equipment, 2021, 41(10): 213-219.
[12] 李超然, 肖飞, 樊亚翔, 等. 基于卷积神经网络的锂离子电池SOH估算[J]. 电工技术学报, 2020, 35(19): 4106-4119.
LI C R, XIAO F, FAN Y X, et al.An approach to lithium-ion battery SOH estimation based on convolutional neural network[J]. Transactions of China Electrotechnical Society, 2020, 35(19): 4106-4119.
[13] 谭千千, 魏婧雯. 基于深度卷积神经网络的锂离子电池健康评估[C]//第22届中国系统仿真技术及其应用学术年会(CCSSTA2021), 大连, 2021: 272-277.
TAN Q Q, WEI J W.Health assessment of lithium ion battery based on deep convolution neural network[C]//Proceedings of the 22nd China Annual Conference on System Simulation Technology and Its Applications (CCSSTA2021), Dalian, 2021: 272-277.
[14] 孙鑫, 孙维堂. 基于多尺度卷积神经网络的轴承剩余寿命预测[J]. 组合机床与自动化加工技术, 2020(10): 168-171.
SUN X, SUN W T.Research on remaining life prediction of bearing based on multi-scale convolution neural network[J]. Modular machine tool & automatic manufacturing technique, 2020(10): 168-171.
[15] 赵小强, 梁浩鹏. 使用改进残差神经网络的滚动轴承变工况故障诊断方法[J]. 西安交通大学学报, 2020, 54(9): 23-31.
ZHAO X Q, LIANG H P.Fault diagnosis method for rolling bearing under variable working conditions using improved residual neural network[J]. Journal of Xi'an Jiaotong University, 2020, 54(9): 23-31.
[16] 高德欣, 刘欣, 杨清. 基于卷积神经网络与双向长短时融合的锂离子电池剩余使用寿命预测[J]. 信息与控制, 2022, 51(3): 318-329, 360.
GAO D X, LIU X, YANG Q.Remaining useful life prediction of lithium-ion battery based on CNN and BiLSTM fusion[J]. Information and control, 2022, 51(3): 318-329, 360.
[17] 杨斌, 樊立萍, 高迎慧, 等. 超高功率密度锂离子电池放电性能及容量预估研究[J]. 太阳能学报, 2023, 44(11): 419-425.
YANG B, FAN L P, GAO Y H, et al.Reserach on discharge performance and capacity prediction of ultra-high power density lithium-ion batteries[J]. Acta energiae solaris sinica, 2023, 44(11): 419-425.
[18] 贾科, 杨哲, 魏超, 等. 基于斯皮尔曼等级相关系数的新能源送出线路纵联保护[J]. 电力系统自动化, 2020, 44(15): 103-111.
JIA K, YANG Z, WEI C, et al.Pilot protection based on spearman rank correlation coefficient for transmission line connected to renewable energy source[J]. Automation of electric power systems, 2020, 44(15): 103-111.
[19] 申永鹏, 孙嵩楠, 孙建彬, 等. 电流特征对锂离子电池性能的影响研究[J]. 太阳能学报, 2023, 44(6): 61-70.
SHEN Y P, SUN S N, SUN J B, et al.Research on influence of current characteristics on performance of lithium-ion battery[J]. Acta energiae solaris sinica, 2023, 44(6): 61-70.
PDF(2126 KB)

Accesses

Citation

Detail

Sections
Recommended

/