RESEARCH ON CONDENSATION PERFORMANCE AND OPTIMIZATION OF SOLAR-DRIVEN METHANE REFORMING FOAM REACTORS

Liu Fengzhang, Cheng Bo, Qin Ning, Liu Xianglei

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (7) : 599-606.

PDF(2153 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2153 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (7) : 599-606. DOI: 10.19912/j.0254-0096.tynxb.2023-0401

RESEARCH ON CONDENSATION PERFORMANCE AND OPTIMIZATION OF SOLAR-DRIVEN METHANE REFORMING FOAM REACTORS

  • Liu Fengzhang1, Cheng Bo2, Qin Ning1, Liu Xianglei2
Author information +
History +

Abstract

Aiming at incident Gauss flux radiation conditions caused by the natural light concentration in solar-driven CH4/CO2 reforming system, the two-dimensional CFD model is established by finite volume method (FVM) coupled with thermal conduction and convection, non-isothermal flow, radiation transfer , chemical dynamics and Monte Carlo ray tracing, the effects of concentrated solar flux, temperature distribution and component distribution on temperature difference and the solar-to-fuel efficiency are comprehensively studied. On the basis of the optimization of pore scale parameters, the foam inlet is optimized into parabolic concave shape, the results show that the parabolic concave shape can significantly reduce the temperature difference on the front surface, with further improvement on temperature inhomogeneity and foam reactor efficiency. As the concave depth h increases from 5 mm to 12.5 mm, the maximum temperature difference on the front surface decreases from 481.2 K to 95.49 K. Besides, when h=12.5 mm, the solar-to-fuel efficiency reached the optimal value of 50.5%, which is increased by 20.4% compared with the planar foam reactor.

Key words

solar energy / thermochemistry / methane / energy storage / reforming reactions / energy efficiency

Cite this article

Download Citations
Liu Fengzhang, Cheng Bo, Qin Ning, Liu Xianglei. RESEARCH ON CONDENSATION PERFORMANCE AND OPTIMIZATION OF SOLAR-DRIVEN METHANE REFORMING FOAM REACTORS[J]. Acta Energiae Solaris Sinica. 2024, 45(7): 599-606 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0401

References

[1] 雷宇, 袁熹, 王颖, 等. 基于太阳能的甲烷重整制氢技术研究进展[J]. 太阳能学报, 2022, 43(12): 154-160.
LEI Y, YUAN X, WANG Y, et al.Research progress of hydrogen production from methane reforming based on solar energy[J]. Acta energiae solaris sinica, 2022, 43(12): 154-160.
[2] LIU X L, WANG T, GAO K, et al.Ca- and Ga-doped LaMnO3 for solar thermochemical CO2 splitting with high fuel yield and cycle stability[J]. ACS applied energy materials, 2021, 4: 9000-9012.
[3] GAO K, LIU X L, WANG T, et al.Sr-doped SmMnO3 perovskites for high-performance near-isothermal solar thermochemical CO2-to-fuel conversion[J]. Sustainable energy & fuels, 2021, 5(17): 4295-4310.
[4] WU S Y, WU S Y, SUN Y G.Light-driven dry reforming of methane on metal catalysts[J]. Solar RRL, 2021, 5(6): 2000507.
[5] LI M J, SUN Z X, HU Y H.Catalysts for CO2 reforming of CH4: a review[J]. Journal of materials chemistry A, 2021, 9(21): 12495-12520.
[6] BABACAN O, DE CAUSMAECKER S, GAMBHIR A, et al.Assessing the feasibility of carbon dioxide mitigation options in terms of energy usage[J]. Nature energy, 2020, 5: 720-728.
[7] BUELENS L C, GALVITA V V, POELMAN H, et al.Super-dry reforming of methane intensifies CO2 utilization via Le Chatelier's principle[J]. Science, 2016, 354(6311): 449-452.
[8] LIU X L, SHI H, MENG X G, et al.Solar-enhanced CO2 conversion with CH4 over synergetic NiCo alloy catalysts with light-to-fuel efficiency of 33.8%[J]. Solar RRL, 2021, 5(8): 2170085.
[9] ZHENG H Y, ZHANG Z Y, XU K D, et al.Analysis of structure-induced performance in photothermal methane dry reforming reactor with coupled optics-CFD modeling[J]. Chemical engineering journal, 2022, 428: 131441.
[10] GAO R X, ZHANG C D, JUN K W, et al.Green liquid fuel and synthetic natural gas production via CO2 hydrogenation combined with reverse water-gas-shift and Co-based Fischer-Tropsch synthesis[J]. Journal of CO2 utilization, 2021, 51: 101619.
[11] LIU X L, MU Z K, SUN C, et al.Highly efficient solar-driven CO2-to-fuel conversion assisted by CH4 over NiCo-ZIF derived catalysts[J]. Fuel, 2022, 310: 122441.
[12] LI M J, SUN Z X, HU Y H.Thermo-photo coupled catalytic CO2 reforming of methane: a review[J]. Chemical engineering journal, 2022, 428: 131222.
[13] CHEN C, KONG M M, ZHOU S Q, et al.Energy storage efficiency optimization of methane reforming with CO2 reactors for solar thermochemical energy storage[J]. Applied energy, 2020, 266: 114788.
[14] HENDRICKS T J, HOWELL J R.Absorption/scattering coefficients and scattering phase functions in reticulated porous ceramics[J]. Journal of heat transfer, 1996, 118(1): 79-87.
[15] LIU H M, MENG X G, YANG W W, et al.Photo-thermal CO2 reduction with methane on group VIII metals: in situ reduced WO3 support for enhanced catalytic activity[J]. Chinese journal of catalysis, 2021, 42(11): 1976-1982.
[16] WÖRNER A, TAMME R. CO2 reforming of methane in a solar driven volumetric receiver-reactor[J]. Catalysis today, 1998, 46(2/3): 165-174.
[17] BALAT-PICHELIN M, BOUSQUET A.Total hemispherical emissivity of sintered SiC up to 1850 K in high vacuum and in air at different pressures[J]. Journal of the European ceramic society, 2018, 38(10): 3447-3456.
[18] KRIBUS A, GRAY Y, GRIJNEVICH M, et al.The promise and challenge of solar volumetric absorbers[J]. Solar energy, 2014, 110: 463-481.
[19] LIU X L, CHENG B, ZHU Q B, et al.Highly efficient solar-driven CO2 reforming of methane via concave foam reactors[J]. Energy, 2022, 261: 125141.
[20] LU J F, CHEN Y, DING J, et al.High temperature energy storage performances of methane reforming with carbon dioxide in a tubular packed reactor[J]. Applied energy, 2016, 162: 1473-1482.
[21] MU Z K, LIU X L, SHI H, et al.A highly efficient solar-driven CO2 reforming of methane on Ni/MgAlOx-LDH loaded Ni foam reactors with heat recovery: experimental measurements and numerical simulations[J]. Chemical engineering journal, 2022, 446: 137437.
[22] 王沛, 李嘉宝, 周领, 等. 太阳能热化学反应器多场耦合及协同优化研究[J]. 太阳能学报, 2022, 43(9): 527-534.
WANG P, LI J B, ZHOU L, et al.Multi-field coupling modeling and cooperative optimization of solar thermal chemical reactor[J]. Acta energiae solaris sinica, 2022, 43(9): 527-534.
[23] 常哲韶, 赵东明, 李鑫, 等. 10 kW高温太阳能热化学反应器及聚光器设计和数值模拟[J]. 太阳能学报, 2021, 42(10): 160-167.
CHANG Z S, ZHAO D M, LI X, et al.Design and numerical simulation of 10 kW solar thermochemical reactor with secondary condenser[J]. Acta energiae solaris sinica, 2021, 42(10): 160-167.
[24] NIMVARI M E, JOUYBARI N F, ESMAILI Q.A new approach to mitigate intense temperature gradients in ceramic foam solar receivers[J]. Renewable energy, 2018, 122: 206-215.
[25] DIETRICH B, SCHABEL W, KIND M, et al.Pressure drop measurements of ceramic sponges—determining the hydraulic diameter[J]. Chemical engineering science, 2009, 64(16): 3633-3640.
[26] ZHU Q B, XUAN Y M.Improving the performance of volumetric solar receivers with a spectrally selective gradual structure and swirling characteristics[J]. Energy, 2019, 172: 467-476.
[27] GOKON N, OSAWA Y, NAKAZAWA D, et al.Kinetics of CO2 reforming of methane by catalytically activated metallic foam absorber for solar receiver-reactors[J]. International journal of hydrogen energy, 2009, 34(4): 1787-1800.
PDF(2153 KB)

Accesses

Citation

Detail

Sections
Recommended

/