ACTIVE DISTURBANCE REJECTION VOLTAGE STABILIZING CONTROL FOR CONVERTER OF MICROGRID WITH MODEL COLLABORATIVE COMPENSATION

Zhou Xuesong, Jing Ya'nan, Zhao Hanyu, Zhao Ming, Wang Bo, Yang Qing

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (7) : 323-332.

PDF(2937 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2937 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (7) : 323-332. DOI: 10.19912/j.0254-0096.tynxb.2023-0408

ACTIVE DISTURBANCE REJECTION VOLTAGE STABILIZING CONTROL FOR CONVERTER OF MICROGRID WITH MODEL COLLABORATIVE COMPENSATION

  • Zhou Xuesong1, Jing Ya'nan1, Zhao Hanyu1, Zhao Ming2, Wang Bo1, Yang Qing1
Author information +
History +

Abstract

Aiming at the problem of voltage instability at the output port of Bi-directional DC-DC Converter in DC microgrid, a linear active disturbance rejection control strategy with known disturbance model description and unknown disturbance second-order description coordinated compensation is proposed to reduce the observation burden of linear expansion state observation and improve its observation accuracy, And further improves the anti-interference performance of the auto disturbance rejection control system. Through theoretical analysis of the system performance, the reason why this control strategy can improve voltage disturbance fluctuations is explained. Finally,through simulation and experimental comparison, it is shown that the improved ADR control system is better than the PI control of the outer loop of voltage and the inner loop of current and the traditional ADR control in terms of immunity and robustness.

Key words

microgrids / DC-DC converters / disturbance rejection / active disturbance rejection control / model compensation

Cite this article

Download Citations
Zhou Xuesong, Jing Ya'nan, Zhao Hanyu, Zhao Ming, Wang Bo, Yang Qing. ACTIVE DISTURBANCE REJECTION VOLTAGE STABILIZING CONTROL FOR CONVERTER OF MICROGRID WITH MODEL COLLABORATIVE COMPENSATION[J]. Acta Energiae Solaris Sinica. 2024, 45(7): 323-332 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0408

References

[1] 肖先勇, 郑子萱. “双碳” 目标下新能源为主体的新型电力系统:贡献、关键技术与挑战[J]. 工程科学与技术, 2022, 54(1): 47-59.
XIAO X Y, ZHENG Z X.New power systems dominated by renewable energy towards the goal of emission peak & carbon neutrality: contribution, key techniques, and challenges[J]. Advanced engineering sciences, 2022, 54(1): 47-59.
[2] 徐岩, 刘婧妍, 张诗杭, 等. 基于遗传算法的直流配电网线路故障定位方法[J]. 太阳能学报, 2020, 41(12): 1-8.
XU Y, LIU J Y, ZHANG S H, et al.Fault location method based on genetic algorithm for DC distribution network[J]. Acta energiae solaris sinica, 2020, 41(12): 1-8.
[3] 卓振宇, 张宁, 谢小荣, 等. 高比例可再生能源电力系统关键技术及发展挑战[J]. 电力系统自动化, 2021, 45(9): 171-191.
ZHUO Z Y, ZHANG N, XIE X R, et al.Key technologies and developing challenges of power system with high proportion of renewable energy[J]. Automation of electric power systems, 2021, 45(9): 171-191.
[4] 杨惠, 晁凯悦, 孙向东, 等. 基于矢量作用时间的双向DC-DC变换器预测电流控制方法[J]. 电工技术学报, 2020, 35(S1): 70-80.
YANG H, CHAO K Y, SUN X D, et al.Predictive current control method for bidirectional DC-DC converter based on optimal operating time of vector[J]. Transactions of China Electrotechnical Society, 2020, 35(S1): 70-80.
[5] 罗玮, 陆益民. 带恒功率负载多电平Boost变换器的复合非线性控制[J]. 太阳能学报, 2022, 43(7): 506-512.
LUO W, LU Y M.Compound nonlinear control of multi-level Boost converter with constant power load[J]. Acta energiae solaris sinica, 2022, 43(7): 506-512.
[6] REN C, DING Y T, HU L, et al.Active disturbance rejection control of euler-lagrange systems exploiting internal damping[J]. IEEE transactions on cybernetics, 2022, 52(6): 4334-4345.
[7] 黄文俊, 白瑞林, 朱渊渤. 基于优化模型补偿自抗扰的伺服控制方法研究[J]. 测控技术, 2017, 36(3): 71-74, 78.
HUANG W J, BAI R L, ZHU Y B.Research on servo control method based on optimized model compensation active disturbance rejection controller[J]. Measurement & control technology, 2017, 36(3): 71-74, 78.
[8] VO A T, KANG H J.Adaptive neural integral full-order terminal sliding mode control for an uncertain nonlinear system[J]. IEEE access, 2019, 7: 42238-42246.
[9] LEE D C, LEE G M, LEE K D.DC-bus voltage control of three-phase AC/DC PWM converters using feedback linearization[J]. IEEE transactions on industry applications, 2000, 36(3): 826-833.
[10] 李冰林, 曾励, 张鹏铭, 等. 主动磁悬浮轴承的滑模自抗扰解耦控制[J]. 电机与控制学报, 2021, 25(7): 129-138.
LI B L, ZENG L, ZHANG P M, et al.Sliding mode active disturbance rejection decoupling control for active magnetic bearings[J]. Electric machines and control, 2021, 25(7): 129-138.
[11] LI S Q, CAO M Y, LI J, et al.Sensorless-based active disturbance rejection control for a wind energy conversion system with permanent magnet synchronous generator[J]. IEEE access, 2019, 7: 122663-122674.
[12] 杨惠, 骆姗, 孙向东, 等. 光伏储能双向DC-DC变换器的自抗扰控制方法研究[J]. 太阳能学报, 2018, 39(5): 1342-1350.
YANG H, LUO S, SUN X D, et al.Research on adrc method for bidirectional DC-DC converter of solar energy storage system[J]. Acta energiae solaris sinica, 2018, 39(5): 1342-1350.
[13] 栾思平, 苏适, 杨洲, 等. 适应于直流新能源/储能接入的三电平Buck-Boost变换器建模及控制器设计[J]. 太阳能学报, 2022, 43(4): 56-65.
LUAN S P, SU S, YANG Z, et al.Modeling and controller design of three-level Buck-Boost converter adapted to DC new energy and energy storage access[J]. Acta energiae solaris sinica, 2022, 43(4): 56-65.
[14] 王晓远, 刘铭鑫, 陈学永, 等. 电动汽车用PMSM带滤波补偿三阶滑模自抗扰控制[J]. 电机与控制学报, 2021, 25(11): 25-34.
WANG X Y, LIU M X, CHEN X Y, et al.Third-order sliding mode active disturbance rejection control of PMSM with filter compensation for electric vehicle[J]. Electric machines and control, 2021, 25(11): 25-34.
[15] 陶珑, 王萍, 王议锋, 等. 微电网负载端接口变换器的自抗扰稳压控制[J]. 电工技术学报, 2022, 37(8): 2076-2085.
TAO L, WANG P, WANG Y F, et al.Voltage stabilization strategy for load-side interface converter of microgrid combined with active disturbance rejection control[J]. Transactions of China Electrotechnical Society, 2022, 37(8): 2076-2085.
[16] TAO L, WANG P, MA X Y, et al.Robustness optimization through modified linear active disturbance rejection control for high-voltage load interface in microgrid[J]. IEEE transactions on industrial electronics, 2023, 70(4): 3909-3919.
[17] LIN P, WU Z, FEI Z Y, et al.A generalized PID interpretation for high-order LADRC and cascade LADRC for servo systems[J]. IEEE transactions on industrial electronics, 2022, 69(5): 5207-5214.
[18] 孙明. 火电机组热工过程自抗扰控制的研究与应用[D]. 北京: 华北电力大学, 2021.
SUN M.Research on active disturbance rejection control and its application in thermal process of power plant[D]. Beijing: North China Electric Power University, 2021.
[19] 刘庆龙. 基于总扰动的线性自抗扰控制性能分析及改进[D]. 青岛: 青岛理工大学, 2018.
LIU Q L.Perfotmance analysis and impronement of linear adrc based on total disturbance[D]. Qingdao: Qingdao Tehcnology University, 2018.
PDF(2937 KB)

Accesses

Citation

Detail

Sections
Recommended

/