SHORT-AND LONG-TERM DEGRADATION PREDICTION FOR PROTON EXCHANGE MEMBRANE FUEL CELL BASED ON EXTREME GRADIENT BOOSTING

Wang Yanqin, Xie Zhuofeng, Han Guopeng, Zhang Gao, Guo Ai

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (7) : 232-239.

PDF(1883 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1883 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (7) : 232-239. DOI: 10.19912/j.0254-0096.tynxb.2023-0409

SHORT-AND LONG-TERM DEGRADATION PREDICTION FOR PROTON EXCHANGE MEMBRANE FUEL CELL BASED ON EXTREME GRADIENT BOOSTING

  • Wang Yanqin1, Xie Zhuofeng2, Han Guopeng1, Zhang Gao3, Guo Ai2
Author information +
History +

Abstract

In order to achieve accurate short- and long-term degradation prediction of fuel cells, a PEMFC degradation prediction model based on extreme gradient boosting (XGBoost) model was proposed. Firstly, the experimental data of fuel cell aging were processed to reduce noise and the voltage recovery characteristics were modeled by using double exponent. After, four multi-step ahead prediction model based on XGBoost and the long-term prediction strategy considering recoverability were constructed, and particle swarm optimization (PSO) algorithm was used to optimize the parameters of the model. Lastly, the prediction results of the four short-term prediction models were compared, and the optimal model was applied to the long-term aging prediction strategy. The results show that the XGBoost prediction model with multiple input multiple output (MIMO) strategy had the best prediction performance, which three-step ahead prediction's root mean square error was 0.00465、mean absolute error was 0.00219 and operation time was 3.48 s. The average relative error of the remaining useful life (RUL) of the long-term prediction strategy based on MIMO-XGBoost and considering recovery was 7.74%, which was significantly better than the autoregressive integrated moving average method.

Key words

fuel cells / degradation / prediction / remaining useful life / extreme gradient boosting

Cite this article

Download Citations
Wang Yanqin, Xie Zhuofeng, Han Guopeng, Zhang Gao, Guo Ai. SHORT-AND LONG-TERM DEGRADATION PREDICTION FOR PROTON EXCHANGE MEMBRANE FUEL CELL BASED ON EXTREME GRADIENT BOOSTING[J]. Acta Energiae Solaris Sinica. 2024, 45(7): 232-239 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0409

References

[1] 江大发, 黄海, 李旺, 等. 燃料电池混合动力机车参数匹配与等效氢耗优化能量管理方法[J]. 太阳能学报, 2023, 44(8): 68-76.
JIANG D F, HUANG H, LI W, et al.Parameter matching and equivalent hydrogen consumption for optimization energy management of fuel cell hybrid locomotive[J]. Acta energiae solaris sinica, 2023, 44(8): 68-76.
[2] 李奇, 刘嘉蔚, 陈维荣. 质子交换膜燃料电池剩余使用寿命预测方法综述及展望[J]. 中国电机工程学报, 2019, 39(8): 2365-2375, 19.
LI Q, LIU J W, CHEN W R.Review and prospect of remaining useful life prediction methods for proton exchange membrane fuel cell[J]. Proceedings of the CSEE, 2019, 39(8): 2365-2375, 19.
[3] HUA Z G, ZHENG Z X, PAHON E, et al.A review on lifetime prediction of proton exchange membrane fuel cells system[J]. Journal of power sources, 2022, 529: 231256.
[4] PEI P, CHANG Q, TANG T.A quick evaluating method for automotive fuel cell lifetime[J]. International journal of hydrogen energy, 2008, 33(14): 3829-3836.
[5] BRESSEL M, HILAIRET M, HISSEL D, et al.Extended Kalman filter for prognostic of proton exchange membrane fuel cell[J]. Applied energy, 2016, 164: 220-227.
[6] CHOI S R, LIM M, KIM D Y, et al.Life prediction of membrane electrode assembly through load and potential cycling accelerated degradation testing in polymer electrolyte membrane fuel cells[J]. International journal of hydrogen energy, 2022, 47(39): 17379-17392.
[7] 张雪霞, 高雨璇, 陈维荣. 基于数据驱动的质子交换膜燃料电池寿命预测[J]. 西南交通大学学报, 2020, 55(2): 417-427.
ZHANG X X, GAO Y X, CHEN W R.Data-driven based remaining useful life prediction for proton exchange membrane fuel cells[J]. Journal of Southwest Jiaotong University, 2020, 55(2): 417-427.
[8] WU Y M, BREAZ E, GAO F, et al.Nonlinear performance degradation prediction of proton exchange membrane fuel cells using relevance vector machine[J]. IEEE transactions on energy conversion, 2016, 31(4): 1570-1582.
[9] LIU J W, LI Q, CHEN W R, et al.Remaining useful life prediction of PEMFC based on long short-term memory recurrent neural networks[J]. International journal of hydrogen energy, 2019, 44(11): 5470-5480.
[10] WANG F K, MAMO T, CHENG X B.Bi-directional long short-term memory recurrent neural network with attention for stack voltage degradation from proton exchange membrane fuel cells[J]. Journal of power sources, 2020, 461: 228170.
[11] SILVA R E, GOURIVEAU R, JEMEÏ S, et al.Proton exchange membrane fuel cell degradation prediction based on adaptive neuro-fuzzy inference systems[J]. International journal of hydrogen energy, 2014, 39(21): 11128-11144.
[12] DETTI A H, STEINER N Y, BOUILLAUT L, et al.Fuel cell performance prediction using an autoregressive moving-average ARMA model[C]//2019 IEEE Vehicle Power and Propulsion Conference (VPPC), Hanoi, Vietnam, 2019: 1-5.
[13] JAVED K, GOURIVEAU R, ZERHOUNI N, et al.Data-driven prognostics of proton exchange membrane fuel cell stack with constraint based summation-wavelet extreme learning machine[C]//6th International Conference on Fundamentals & Development of Fuel Cells. Toulouse, France, 2015.
[14] CHEN T Q, GUESTRIN C.XGBoost: a scalable tree boosting system[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco, California, USA, 2016: 785-794.
[15] CAI R, XIE S, WANG B Z, et al.Wind speed forecasting based on extreme gradient boosting[J]. IEEE access, 2020, 8: 175063-175069.
[16] 王献志, 曾四鸣, 周雪青, 等. 基于XGBoost联合模型的光伏发电功率预测[J]. 太阳能学报, 2022, 43(4): 236-242.
WANG X Z, ZENG S M, ZHOU X Q, et al.Power forecast of photovoltaic generation based on xgboost combined model[J]. Acta energiae solaris sinica, 2022, 43(4): 236-242.
[17] LI W H, JIAO Z P, DU L, et al.An indirect RUL prognosis for lithium-ion battery under vibration stress using Elman neural network[J]. International journal of hydrogen energy, 2019, 44(23): 12270-12276.
[18] FCLAB Research Federation.2014 IEEE PHM data challenge[EB/OL].[2018-01-02].http://eng.fclab.fr/ieee-phm-2014-%20data-challenge/.
[19] 杨维, 李歧强. 粒子群优化算法综述[J]. 中国工程科学, 2004, 6(5): 87-94.
YANG W, LI Q Q.Survey on particle swarm optimization algorithm[J]. Engineering science, 2004, 6(5): 87-94.
[20] WANG C, LI Z L, OUTBIB R, et al.A novel long short-term memory networks-based data-driven prognostic strategy for proton exchange membrane fuel cells[J]. International journal of hydrogen energy, 2022, 47(18): 10395-10408.
[21] JOUIN M, GOURIVEAU R, HISSEL D, et al.Joint particle filters prognostics for proton exchange membrane fuel cell power prediction at constant current solicitation[J]. IEEE transactions on reliability, 2016, 65(1): 336-349.
PDF(1883 KB)

Accesses

Citation

Detail

Sections
Recommended

/