TMD PARAMETER OPTIMIZATION OF FLOATING WIND TURBINE FLOATING PLATFORM BASED ON MULTI-OBJECTIVE GRAY WOLF OPTIMIZER

Liu Yingming, Xu Xuefeng, Wang Xiaodong, Zhang Yinghao, Wang Hanbo, Li Binbin

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (7) : 672-680.

PDF(2545 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2545 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (7) : 672-680. DOI: 10.19912/j.0254-0096.tynxb.2023-0413

TMD PARAMETER OPTIMIZATION OF FLOATING WIND TURBINE FLOATING PLATFORM BASED ON MULTI-OBJECTIVE GRAY WOLF OPTIMIZER

  • Liu Yingming, Xu Xuefeng, Wang Xiaodong, Zhang Yinghao, Wang Hanbo, Li Binbin
Author information +
History +

Abstract

Aiming at the problem of tuning the parameters of the tuned mass damper (TMD) in the offshore turbine floating platform, this paper takes the 5 MW Barge offshore wind turbine as the research object and uses the multi-objective grey wolf optimizer (MOGWO) to optimize the TMD parameter configuration. Firstly, based on the Euler-Lagrange equation, the dynamic models of offshore wind turbine containing TMD in the floating platform is established, and the Levenberg-Marquardt (LM) method is used to identify the unknown parameters of the model. Secondly, considering the control targets of the top of the tower and the base of the tower, the MOGWO algorithm is used to optimize the stiffness and damping parameters of TMD. Finally, simulation analysis is carried out under different working conditions. The results show that compared with the traditional single-objective optimization algorithm, the TMD optimized by MOGWO algorithm has a better vibration control effect on wind turbines.

Key words

vibration suppression / dynamic models / offshore wind turbines / multi-objective grey wolf optimizer / tuned mass damper

Cite this article

Download Citations
Liu Yingming, Xu Xuefeng, Wang Xiaodong, Zhang Yinghao, Wang Hanbo, Li Binbin. TMD PARAMETER OPTIMIZATION OF FLOATING WIND TURBINE FLOATING PLATFORM BASED ON MULTI-OBJECTIVE GRAY WOLF OPTIMIZER[J]. Acta Energiae Solaris Sinica. 2024, 45(7): 672-680 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0413

References

[1] 张艺三, 胡松, 王芳. 计及恶劣天气约束的海上风能波浪能资源分布研究[J]. 太阳能学报, 2022, 43(12): 200-205.
ZHANG Y S, HU S, WANG F.Distribution of offshore wind and wave energy resources considering severe weather constraints[J]. Acta energiae solaris sinica, 2022, 43(12): 200-205.
[2] MAGAR K T, BALAS M J, FROST S.Direct adaptive control for individual blade pitch control of wind turbines for load reduction[J]. Journal of intelligent material systems and structures, 2015, 26(12): 1564-1572.
[3] JONKMAN J. Influence of control on the pitch damping of a floating wind turbine[C]//Proceedings of the 46th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 2008: AIAA2008-1306.
[4] NAMIK H, STOL K.Individual blade pitch control of a spar-buoy floating wind turbine[J]. IEEE transactions on control systems technology, 2014, 22(1): 214-223.
[5] LACKNER M A, ROTEA M A.Passive structural control of offshore wind turbines[J]. Wind energy, 2011, 14(3): 373-388.
[6] LACKNER M A, ROTEA M A.Structural control of floating wind turbines[J]. Mechatronics, 2011, 21(4): 704-719.
[7] STEWART G, LACKNER M.Offshore wind turbine load reduction employing optimal passive tuned mass damping systems[J]. IEEE transactions on control systems technology, 2013, 21(4): 1090-1104.
[8] HE E M, HU Y Q, ZHANG Y.Optimization design of tuned mass damper for vibration suppression of a barge-type offshore floating wind turbine[J]. Proceedings of the institution of mechanical engineers, part M: journal of engineering for the maritime environment, 2017, 231(1): 302-315.
[9] 杨佳佳, 贺尔铭, 胡亚琪. 浮动平台内TMD对Barge式海上浮动风机的振动抑制研究[J]. 西北工业大学学报, 2018, 36(2): 238-245.
YANG J J, HE E M, HU Y Q.Vibration mitigation of the barge-type offshore wind turbine with a tuned mass damper on floating platform[J]. Journal of Northwestern Polytechnical University, 2018, 36(2): 238-245.
[10] 张晓峰, 金鑫, 林益帆, 等. 基于TMD的漂浮式风力机振动控制[J]. 太阳能学报, 2020, 41(10): 292-300.
ZHANG X F, JIN X, LIN Y F, et al.Vibration control of floating wind turbines based on TMD[J]. Acta energiae solaris sinica, 2020, 41(10): 292-300.
[11] JONKMAN J M, BUHL M L. FAST user's guide-Updated August2005[R]. NREL/TP-500-38230, 2005.
[12] 邢怀玺, 吴华, 陈游, 等. 基于多目标灰狼算法的干扰资源多效能优化方法[J]. 北京航空航天大学学报, 2020, 46(10): 1990-1998.
XING H X, WU H, CHEN Y, et al.Multi-efficiency optimization method of jamming resource based on multi-objective grey wolf optimizer[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(10): 1990-1998.
[13] 陈辅斌, 李忠学, 杨喜娟. 基于改进NSGA2算法的多目标柔性作业车间调度[J]. 工业工程, 2018, 21(2): 55-61.
CHEN F B, LI Z X, YANG X J.Multi-objective flexible job shop scheduling based on improved NSGA2 algorithm[J]. Industrial engineering journal, 2018, 21(2): 55-61.
[14] JONKMAN J M.Dynamics modeling and loads analysis of an offshore floating wind turbine[R]. NREL/TP-500-41958, 2007.
PDF(2545 KB)

Accesses

Citation

Detail

Sections
Recommended

/