NORMALIZED CONTROLLER FOR PHOTOVOLTAIC DEFECT DETECTION IN DYNAMIC OPEN SCENARIOS

Chen Haiyong, Shi Shijie

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (7) : 540-547.

PDF(2981 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2981 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (7) : 540-547. DOI: 10.19912/j.0254-0096.tynxb.2023-0418

NORMALIZED CONTROLLER FOR PHOTOVOLTAIC DEFECT DETECTION IN DYNAMIC OPEN SCENARIOS

  • Chen Haiyong, Shi Shijie
Author information +
History +

Abstract

To address domain shift issues in solar cell datasets, this thesis proposes a data normalization controller (DNC) tailored for photovoltaic defect detection in dynamic open environments, aiming to enhance the network's domain adaptation capability. During the testing phase, the DNC method in this study adjusts model parameters based on small batches of sample data (less than 0.5%), effectively rectifying domain statistics. DNC maps data experiencing domain shift in the target domain onto the same distribution space as the source domain data, without requiring prior labeling of data or access to the entire target domain dataset. Experimental results demonstrate that DNC significantly improves the target detection model's adaptability to domain-shifted data. Using only a minimal amount of unlabeled target domain data (less than 0.5%), substantial performance gains can be achieved on out-of-distribution data, while maintaining the model's prediction speed (FPS).

Key words

solar cell / unsupervised domain adaptation / object detection / data normalization / defect detection

Cite this article

Download Citations
Chen Haiyong, Shi Shijie. NORMALIZED CONTROLLER FOR PHOTOVOLTAIC DEFECT DETECTION IN DYNAMIC OPEN SCENARIOS[J]. Acta Energiae Solaris Sinica. 2024, 45(7): 540-547 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0418

References

[1] DEITSCH S, CHRISTLEIN V, BERGER S, et al.Automatic classification of defective photovoltaic module cells in electroluminescence images[J]. Solar energy, 2019, 185: 455-468.
[2] 周颖, 毛立, 张燕, 等. 改进CNN的太阳电池缺陷识别方法研究[J]. 太阳能学报, 2020, 41(12): 69-76.
ZHOU Y, MAO L, ZHANG Y, et al.Research on defect detection and classification for solar cells based on improved convolutional neural network[J]. Acta energiae solaris sinica, 2020, 41(12): 69-76.
[3] 周颖, 叶红, 王彤, 等. 基于多尺度 CNN 的光伏组件缺陷识别[J]. 太阳能学报, 2022, 43(2): 211-216.
ZHOU Y, YE H, WANG T, et al.Photovoltaic modules defect identification base on multi-scale convolution neural network[J]. Acta energiae solaris sinica, 2022, 43(2): 211-216.
[4] SU B Y, CHEN H Y, CHEN P, et al.Deep learning-based solar-cell manufacturing defect detection with complementary attention network[J]. IEEE transactions on industrial informatics, 2021, 17(6): 4084-4095.
[5] CHEN C, FU Z H, CHEN Z H, et al.HoMM: higher-order moment matching for unsupervised domain adaptation[C]//AAAI Conference on Artificial Intelligence. New York, USA, 2020: 3422-3429.
[6] LUO Y W, ZHENG L, GUAN T, et al.Taking a closer look at domain shift:category-level adversaries for semantics consistent domain adaptation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, CA, USA, 2019: 2502-2511.
[7] LIN T Y, GOYAL P, GIRSHICK R, et al.Focal loss for dense object detection[C]//2017 IEEE International Conference on Computer Vision (ICCV). Venice, Italy, 2017: 2999-3007.
[8] RECHT B, ROELOFS R, SCHMIDT L, et al. Do ImageNet classifiers generalize to ImageNet? [EB/OL].2019: arXiv: 1902.10811. http://arxiv.org/abs/1902.10811.
[9] HE Z W, ZHANG L.Multi-adversarial faster-RCNN for unrestricted object detection[C]//2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul, Korea, 2019: 6667-6676.
[10] ZHENG Y T, HUANG D, LIU S T, et al.Cross-domain object detection through coarse-to-fine feature adaptation[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, WA, USA, 2020: 13763-13772.
[11] WANG H Y, ZHU Y K, ADAM H, et al.MaX-DeepLab: end-to-end panoptic segmentation with mask transformers[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville, TN, USA, 2021: 5459-5470.
[12] WANG Y, ZHANG R, ZHANG S, et al.Domain-specific suppression for adaptive object detection[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville, TN, USA, 2021: 9598-9607.
[13] SU P, WANG K, ZENG X Y, et al.Adapting object detectors with conditional domain normalization[C]//Computer Vision-ECCV 2020: 16th European Conference. Glasgow, UK, 2020: 403-419.
[14] XU C D, ZHAO X R, JIN X, et al.Exploring categorical regularization for domain adaptive object detection[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, WA, USA, 2020: 11721-11730.
[15] CHEN C Q, ZHENG Z B, DING X H, et al.Harmonizing transferability and discriminability for adapting object detectors[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, WA, USA, 2020: 8866-8875.
[16] XU M H, WANG H, NI B B, et al.Cross-domain detection via graph-induced prototype alignment[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, WA, USA, 2020: 12352-12361.
[17] ZHU J Y, PARK T, ISOLA P, et al.Unpaired image-to-image translation using cycle-consistent adversarial networks[C]//2017 IEEE International Conference on Computer Vision (ICCV). Venice, Italy, 2017: 2242-2251.
[18] 杨振宇, 苏建徽, 汪海宁, 等. 光伏阵列I-V特性曲线测量误差分析与修正方法[J]. 太阳能学报, 2023, 44(5): 210-216.
YANG Z Y, SU J H, WANG H N, et al.Measurement error analysis and correction for I-V characteristic of photovoltaic array[J]. Acta energiae solaris sinica, 2023, 44(5): 210-216.
[19] 张东, 俞凯, 景金龙, 等. 积尘形态及密度对太阳能PV/T系统的性能影响研究[J]. 太阳能学报, 2023, 44(5): 171-177.
ZHANG D, YU K, JING J L, et al.Effect of dust morphology and density on performance of solar PV/T system[J]. Acta energiae solaris sinica, 2023, 44(5): 171-177.
[20] 王道累, 李明山, 姚勇, 等. 改进SSD的光伏组件热斑缺陷检测方法[J]. 太阳能学报, 2023, 44(4): 420-425.
WANG D L, LI M S, YAO Y, et al.Method of hotspot detection of photovoltaic panels modules on improved SSD[J]. Acta energiae solaris sinica, 2023, 44(4): 420-425.
PDF(2981 KB)

Accesses

Citation

Detail

Sections
Recommended

/