DATA-DRIVEN PHOTOVOLTAIC STRING FUSION MODEL OF MOUNTAIN POWER PLANT

Zhang Rui, Ma Mingyao, Ma Wenting, Yang Bao, Fang Zhenyu, Tao Yajie

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (7) : 517-524.

PDF(2182 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2182 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (7) : 517-524. DOI: 10.19912/j.0254-0096.tynxb.2023-0447

DATA-DRIVEN PHOTOVOLTAIC STRING FUSION MODEL OF MOUNTAIN POWER PLANT

  • Zhang Rui1, Ma Mingyao2, Ma Wenting2, Yang Bao1, Fang Zhenyu1, Tao Yajie3
Author information +
History +

Abstract

In this study, leveraging historical power generation data and environmental data, a meticulous selection of clear-sky weather samples was conducted. Employing the solar irradiation model, horizontal irradiance was converted into the inclined irradiance under various combinations of azimuth and tilt angles. Subsequent to this, the ideal current curve of the PV string was calculated. According to the difference characteristics of the peak value of the string current output curve at different angles, the peaks between the ideal and actual current output curves were matched. Based on multiple matching outcomes, a comprehensive assessment of the PV string's tilt angle and azimuth was effectively achieved. Building upon the foundation of the dual-diode solar cell model, specific angle data encompassing both tilt and azimuth were introduced as pivotal inputs, thereby establishing a PV string fusion model for mountainous power plants. Rigorously validated through experimental verification, this model can accurately simulate the output characteristic curves of PV strings of mountainous power plants online, thus further demonstrating its significant practical utility.

Key words

photovoltaic power station / incident solar radiation / azimuth / tilt angle / information fusion

Cite this article

Download Citations
Zhang Rui, Ma Mingyao, Ma Wenting, Yang Bao, Fang Zhenyu, Tao Yajie. DATA-DRIVEN PHOTOVOLTAIC STRING FUSION MODEL OF MOUNTAIN POWER PLANT[J]. Acta Energiae Solaris Sinica. 2024, 45(7): 517-524 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0447

References

[1] 肖运启, 张美玲, 郭治昌, 等. 山地光伏电站固定式组件安装角度优化方法[J]. 太阳能学报, 2020, 41(5): 329-335.
XIAO Y Q, ZHANG M L, GUO Z C, et al.Optimum design for tilt and orientation angle of fixed PV module of PV power station on mountainous area[J]. Acta energiae solaris sinica, 2020, 41(5): 329-335.
[2] 李冉. 山地光伏电站关键设计技术研究[D]. 济南: 山东大学, 2020.
LI R.Key design technologies of mountain photovoltaic power plant[D]. Ji'nan: Shandong University, 2020.
[3] CHEN X M, LI Y, ZHAO Z G, et al.General method to obtain recommended tilt and azimuth angles for photovoltaic systems worldwide[J]. Solar energy, 2018, 172: 46-57.
[4] 李栋军, 李清坤, 郑重. 基于Simulink的光伏发电阵列的故障诊断与仿真[J]. 电子制作, 2016(23): 75-76.
LI D J, LI Q K, ZHENG Z.Fault diagnosis and simulation of photovoltaic power generation array based on Simulink[J]. Practical electronics, 2016(23): 75-76.
[5] LI Y L, DING K, ZHANG J W, et al.A fault diagnosis method for photovoltaic arrays based on fault parameters identification[J]. Renewable energy, 2019, 143: 52-63.
[6] 孙艳. 基于模型和数据驱动的光伏组件故障检测与诊断[D]. 杭州: 浙江大学, 2019.
SUN Y.Fault detection and diagnosis of photovoltaic modules based on model and data driven[D].Hangzhou: Zhejiang University, 2019.
[7] MENG B, LOONEN R C G M, HENSEN J L M. Data-driven inference of unknown tilt and azimuth of distributed PV systems[J]. Solar energy, 2020, 211: 418-432.
[8] PORTOLAN DOS SANTOS Í, RÜTHER R. Limitations in solar module azimuth and tilt angles in building integrated photovoltaics at low latitude tropical sites in Brazil[J]. Renewable energy, 2014, 63: 116-124.
[9] LIU B Y H, JORDAN R C. The interrelationship and characteristic distribution of direct, diffuse and total solar radiation[J]. Solar energy, 1960, 4(3): 1-19.
[10] HAY J E.Calculation of monthly mean solar radiation for horizontal and inclined surfaces[J]. Solar energy, 1979, 23(4): 301-307.
[11] PEREZ R, INEICHEN P, SEALS R, et al.Modeling daylight availability and irradiance components from direct and global irradiance[J]. Solar energy, 1990, 44(5): 271-289.
[12] 王斯成. 各类光伏方阵面辐照度的计算[J]. 太阳能, 2018(4): 19-28.
WANG S C.Calculation of the irradiance of all types of PV squares[J]. Solar energy, 2018(4): 19-28.
[13] 吴贞龙, 徐政, 胡晓燕, 等. 倾斜面太阳辐照度实用计算模型的研究[J]. 太阳能学报, 2016, 37(3): 787-793.
WU Z L, XU Z, HU X Y, et al.Study on practical calculating models of irradiance intensity on tilted surfaces[J]. Acta energiae solaris sinica, 2016, 37(3): 787-793.
[14] SENTURK A, EKE R.A new method to simulate photovoltaic performance of crystalline silicon photovoltaic modules based on datasheet values[J]. Renewable energy, 2017, 103: 58-69.
[15] BABATUNDE A A, ABBASOGLU S, SENOL M.Analysis of the impact of dust, tilt angle and orientation on performance of PV plants[J]. Renewable and sustainable energy reviews, 2018, 90: 1017-1026.
[16] ISHAQUE K, SALAM Z, TAHERI H.Simple, fast and accurate two-diode model for photovoltaic modules[J]. Solar energy materials and solar cells, 2011, 95(2): 586-594.
[17] ISHAQUE K, SALAM Z, SYAFARUDDIN. A comprehensive MATLAB Simulink PV system simulator with partial shading capability based on two-diode model[J]. Solar energy, 2011, 85(9): 2217-2227.
[18] CHIN V J, SALAM Z, ISHAQUE K.An accurate modelling of the two-diode model of PV module using a hybrid solution based on differential evolution[J]. Energy conversion and management, 2016, 124: 42-50.
PDF(2182 KB)

Accesses

Citation

Detail

Sections
Recommended

/