DESIGN AND OPTIMIZATION OF UAV DEICING CONTROL SYSTEM FOR WIND TURBINE BLADES

Wang Yibo, Han Qiaoli, Liu Haiyang, Yang Min, Wu Chenglong

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (7) : 641-647.

PDF(2163 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2163 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (7) : 641-647. DOI: 10.19912/j.0254-0096.tynxb.2023-0477

DESIGN AND OPTIMIZATION OF UAV DEICING CONTROL SYSTEM FOR WIND TURBINE BLADES

  • Wang Yibo1, Han Qiaoli2, Liu Haiyang1, Yang Min1, Wu Chenglong1
Author information +
History +

Abstract

For the problem of wind turbine blade ice covering in the northern alpine regions such as Inner Mongolia, the unmanned deicing control system for wind turbine blades is proposed for the first time in China. Based on the STM32F103 foundation, the UAV deicing control system is designed, and the de-icing control system design scheme is given from the functional requirements of deicer injection control, real-time monitoring of sensor collection data, remote operation and device safety control, etc. The software and hardware system optimization design is carried out for the designed de-icing control PWM drive control part, using discrete PID control algorithm and negative feedback closed-loop control The system improves flow accuracy and de-icing efficiency. The integration of the deicing control device and system debugging are completed, the experimental platform is built, the eight-rotor UAV carrier is selected and parameter setting and flight testing are carried out, and the integration of the whole de-icing UAV equipment is finally completed to achieve accurate local de-icing.

Key words

wind turbine blades / UAV / deicing control system / STM32F103 / pulse width modulation(PWM) / discrete PID control algorithm

Cite this article

Download Citations
Wang Yibo, Han Qiaoli, Liu Haiyang, Yang Min, Wu Chenglong. DESIGN AND OPTIMIZATION OF UAV DEICING CONTROL SYSTEM FOR WIND TURBINE BLADES[J]. Acta Energiae Solaris Sinica. 2024, 45(7): 641-647 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0477

References

[1] 中国电力知库. 2019年中国风电装机容量、发电量分析图[EB/OL]. http://data.pkthinker.com.
China Electric Power Knowledge Base. Analysis chart of China's wind power installed capacity and power generation in2019[EB/OL]. 2020.3. http://data.pkthinker.com.
[2] 龚妙, 李录平, 刘瑞, 等. 风力机叶片覆冰状态监测基准值与分级诊断标准研究[J]. 太阳能学报, 2021, 42(2): 172-178.
GONG M, LI L P, LIU R, et al.Research on ice accretion conditon monitoring reference value and grading diagnosis standard of wind turbine blades[J]. Acta energiae solaris sinica, 2021, 42(2): 172-178.
[3] 陈标, 何建军, 揭军, 等. 南方高湿环境下风电机组叶片覆冰机制及防冰涂层研究[J]. 风能, 2020(4): 68-72.
CHEN B, HE J J, JIE J, et al.Study on icing mechanism and anti-icing coating of wind turbine blades under high humidity environment in southern China[J]. Wind energy, 2020(4): 68-72.
[4] FAKOREDE O, FEGER Z, IBRAHIM H, et al.Ice protection systems for wind turbines in cold climate: characteristics, comparisons and analysis[J]. Renewable and sustainable energy reviews, 2016, 65: 662-675.
[5] SABATIER J, LANUSSE P, FEYTOUT B, et al.CRONE control based anti-icing/deicing system for wind turbine blades[J]. Control engineering practice, 2016, 56: 200-209.
[6] LEHTOMÄKI V, RISSANEN S, WADHAM-GAGNON M, et al. Fatigue loads of iced turbines: two case studies[J]. Journal of wind engineering and industrial aerodynamics, 2016, 158: 37-50.
[7] 刘庆超, 郭鹏, 张伟, 等. 多参数模型风电机组叶片结冰监测与预警研究[J]. 太阳能学报, 2022, 43(2): 402-407.
LIU Q C, GUO P, ZHANG W, et al.Study on muti-parameter model of wind turbine blade icing detection and warning[J]. Acta energiae solaris sinica, 2022, 43(2): 402-407.
[8] LAMRAOUI F, FORTIN G, BENOIT R, et al.Atmospheric icing impact on wind turbine production[J]. Cold regions science and technology, 2014, 100: 36-49.
[9] 马强, 吴晓敏, 陈彦. 风力机叶片覆冰的数值模拟[J]. 工程热物理学报, 2014, 35(4): 770-773.
MA Q, WU X M, CHEN Y.Numerical simulation of ice accretion on wind turbine blades[J]. Journal of engineering thermophysics, 2014, 35(4): 770-773.
[10] 舒立春, 邱刚, 胡琴, 等. 风力发电机叶片临界除冰功率的数值计算模型及自然环境实验研究[J]. 中国电机工程学报, 2018, 38(13): 3997-4003, 4041.
SHU L C, QIU G, HU Q, et al.Numerical model and field experimental investigation of threshold heat flux of wind turbine de-icing[J]. Proceedings of the CSEE, 2018, 38(13): 3997-4003, 4041.
[11] 李程. 浅谈风电机组覆冰的影响及应对措施[J]. 科技创新导报, 2019, 16(15): 93-94.
LI C.Discussion on the influence of wind turbine icing and its countermeasures[J]. Science and technology innovation herald, 2019, 16(15): 93-94.
[12] 李辉, 胡姚刚, 李洋, 等. 大功率并网风电机组状态监测与故障诊断研究综述[J]. 电力自动化设备, 2016, 36(1): 6-16.
LI H, HU Y G, LI Y, et al.Overview of condition monitoring and fault diagnosis for grid-connected high-power wind turbine unit[J]. Electric power automation equipment, 2016, 36(1): 6-16.
[13] 徐云川. 采用变量喷洒控制装置的四旋翼无人机[J]. 电子世界, 2018(10): 139-140.
XU Y C.Quadrotor UAV based on variable pesticide spraying[J]. Electronics world, 2018(10): 139-140.
[14] 刘泽锋, 唐宇, 骆少明, 等. 多旋翼植保无人机变量喷洒系统设计[J]. 农机化研究, 2018, 40(12): 47-54.
LIU Z F, TANG Y, LUO S M, et al.Design of a variable spraying system based on multi-rotor unmanned aerial vehicle[J]. Journal of agricultural mechanization research, 2018, 40(12): 47-54.
[15] 郑德鲁. 一种小型无人机农药喷洒系统设计[J]. 广西农业机械化, 2019(2): 45-46.
ZHENG D L.Design of a small UAV pesticide spraying system[J]. Guangxi agricultural mechanization, 2019(2): 45-46.
[16] 韩宾. 基于pixhawk的多旋翼全自动植保无人机控制系统研究[D]. 杭州: 杭州电子科技大学, 2017.
HAN B.Research on multi-rotor automatic control system of UAV Based on pixhawk[D]. Hangzhou: Hangzhou Dianzi University, 2017.
[17] 王朔. 植保无人机变量喷洒系统研究[D]. 杭州: 杭州电子科技大学, 2018.
WANG S.Study on plant variables uav variable spraying system[D]. Hangzhou: Hangzhou Dianzi University, 2018.
[18] 李增坤. 植保机喷药控制系统设计与开发[D]. 沈阳: 沈阳工业大学, 2019.
LI Z K.Design and implement of plant protection spray control system[D]. Shenyang: Shenyang University of Technology, 2019.
[19] 聂茹. 基于STM32F103C8T6的植保无人机设计[J]. 自动化技术与应用, 2020, 39(8): 20-24.
NIE R.Design of plant protection UAV based on STM32F103C8T6[J]. Techniques of automation and applications, 2020, 39(8): 20-24.
[20] 张泉勇. 基于神经网络的植保无人机变量喷雾系统设计[D]. 广州: 华南农业大学, 2019.
ZHANG Q Y.Design of plant protection uav variable spray system based on neural network[D]. Guangzhou: South China Agricultural University, 2019.
PDF(2163 KB)

Accesses

Citation

Detail

Sections
Recommended

/