METHOD OF SCOURING PIT MONITORING FOR OFFSHORE WIND POWER FOUNDATION BASED ON ACOUSTIC REVERSE TIME MIGRATION IMAGING

Yang Kaiduan, Zhang Cheng, Zhang Ning, Sun Huaifeng, Wang Xiaolong

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (8) : 466-476.

PDF(4495 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(4495 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (8) : 466-476. DOI: 10.19912/j.0254-0096.tynxb.2023-0520

METHOD OF SCOURING PIT MONITORING FOR OFFSHORE WIND POWER FOUNDATION BASED ON ACOUSTIC REVERSE TIME MIGRATION IMAGING

  • Yang Kaiduan1, Zhang Cheng1, Zhang Ning1, Sun Huaifeng2,3, Wang Xiaolong4
Author information +
History +

Abstract

Our country has a vast sea area, long coastline, and abundant offshore wind energy resources, giving offshore wind power broad development prospects and making it crucial for energy transition. However, in complex marine environments, pile foundations alter the flow field, causing local scour and affecting structural safety and stability. Although there are many methods to monitor underwater structure scour, they have limitations in complex marine environments, making real-time monitoring challenging. In this article, a forward method for monitoring scour holes in offshore wind turbine foundations was established based on acoustic equations,and the wave field characteristics of the scour hole model were analyzed. On this basis,a linear observation system was proposed for monitoring the development process of the scour hole. The inverse time migration imaging method was used to achieve surface interface imaging of the scour hole.The numerical simulation results indicate that this method has good imaging effect for scour holes of different scales and shapes.

Key words

offshore wind power / foundation / scour / real-time monitoring / reverse time migration imaging

Cite this article

Download Citations
Yang Kaiduan, Zhang Cheng, Zhang Ning, Sun Huaifeng, Wang Xiaolong. METHOD OF SCOURING PIT MONITORING FOR OFFSHORE WIND POWER FOUNDATION BASED ON ACOUSTIC REVERSE TIME MIGRATION IMAGING[J]. Acta Energiae Solaris Sinica. 2024, 45(8): 466-476 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0520

References

[1] Global Wind Energy Council. Global wind report 2023[R]. 2023.
[2] HOU G, XU K, LIAN J J.A review on recent risk assessment methodologies of offshore wind turbine foundations[J]. Ocean engineering, 2022, 264: 112469.
[3] 孙鹏, 赵业彬, 李婧宜, 等. 海上风电三筒导管架基础地基土的抗液化性能研究[J]. 太阳能学报, 2023, 44(5): 342-348.
SUN P, ZHAO Y B, LI J Y, et al.Numerical simulation of liquefaction resistance of foundation soil of three bucket jacket foundation for offshore wind turbine[J]. Acta energiae solaris sinica, 2023, 44(5): 342-348.
[4] MA H W, LU Z Y, LI Y T, et al.Permanent accumulated rotation of offshore wind turbine monopile due to typhoon-induced cyclic loading[J]. Marine structures, 2021, 80: 103079.
[5] ZHANG J H, WANG H.Development of offshore wind power and foundation technology for offshore wind turbines in China[J]. Ocean engineering, 2022, 266: 113256.
[6] 魏凯, 王顺意, 裘放, 等. 海上风电单桩基础海流局部冲刷及防护试验研究[J]. 太阳能学报, 2021, 42(9): 338-343.
WEI K, WANG S Y, QIU F, et al.Experimental study on local scour and its protection of offshore wind turbine monopile under ocean current[J]. Acta energiae solaris sinica, 2021, 42(9): 338-343.
[7] GUAN D W, XIE Y X, YAO Z S, et al.Local scour at offshore windfarm monopile foundations: a review[J]. Water science and engineering, 2022, 15(1): 29-39.
[8] BAO T, LIU Z.Vibration-based bridge scour detection: a review[J]. Structural control and health monitoring, 2017, 24(7): e1937.
[9] WANG K, LIN C P.Applicability and limitations of time domain reflectometry bridge scour monitoring system in general field conditions[J]. Structural health monitoring, 2021, 20(3): 1074-1089.
[10] KONG X, HO S C M, SONG G B, et al. Scour monitoring system using fiber Bragg grating sensors and water-swellable polymers[J]. Journal of bridge engineering, 2017, 22(7): 04017029.
[11] WANG C, YU X, LIANG F Y.A review of bridge scour: mechanism, estimation, monitoring and countermeasures[J]. Natural hazards, 2017, 87(3): 1881-1906.
[12] KAZEMIAN A, YEE T E, OGUZMERT M, et al.A review of bridge scour monitoring techniques and developments in vibration based scour monitoring for bridge foundations[J]. Advances in bridge engineering, 2023, 4(1): 2.
[13] JIANG S H, WANG Q L, SUN W H, et al.Bridge scour monitoring using smart magnetic rock[J]. Measurement, 2022, 205: 112175.
[14] PENG L.Design and implementation of realtime scour monitoring of Hangzhou Bay Sea-crossing bridge pier based on dual-axis scanning sonar[J]. IOP conference series: earth and environmental science, 2020, 527(1): 012003.
[15] 王鑫, 林鹏, 黄浩东, 等. 海上风电基础冲刷动力特性及在线监测[J]. 清华大学学报(自然科学版), 2023, 63(7): 1087-1094.
WANG X, LIN P, HUANG H D, et al.Scour dynamic properties and online monitoring of offshore wind power foundation[J]. Journal of Tsinghua University(science and technology), 2023, 63(7): 1087-1094.
[16] CHEN X G, NIU X D, XU Q Y, et al.Method for monitoring scour depth of pile foundations based on modal identification[J]. Smart materials and structures, 2021, 30(7): 075008.
[17] 陈雷, 王春亮, 黄家勇, 等. 多波束和三维声呐在水下构筑物基础冲刷检测中的综合应用[J]. 测绘通报, 2022(增刊2): 126-129.
CHEN L, WANG C L, HUANG J Y, et al.Comprehensive application of multi-beam and three-dimensional sonar in foundation scour detection of underwater structures[J]. Bulletin of surveying and mapping, 2022(S2): 126-129.
[18] 刘洋. 波动方程时空域有限差分数值解及吸收边界条件研究进展[J]. 石油地球物理勘探, 2014, 49(1): 35-46.
LIU Y.Research progress on time-space domain finitedifference numerical solution and absorption boundary conditions of wave equation[J]. Oil geophysical prospecting, 2014, 49(1): 35-46.
[19] 刘洋, 李承楚, 牟永光. 任意偶数阶精度有限差分法数值模拟[J]. 石油地球物理勘探, 1998, 33(1): 1-10.
LIU Y, LI C C, MOU Y G.Finite-difference numerical modeling of any even-order accuracy[J]. Oil geophysical prospecting, 1998, 33(1): 1-10.
[20] LIU Y.Globally optimal finite-difference schemes based on least squares[J]. GEOPHYSICS, 2013, 78(4): T113-T132.
[21] REYNOLDS A C.Boundary conditions for the numerical solution of wave propagation problems[J]. Geophysics, 1978, 43(6): 1099.
[22] CLAYTON R, ENGQUIST B.Absorbing boundary conditions for acoustic and elastic wave equations[J]. Bulletin of the Seismological Society of America, 1977, 67(6): 1529-1540.
[23] 王维红, 柯璇, 裴江云. 完全匹配层吸收边界条件应用研究[J]. 地球物理学进展, 2013, 28(5): 2508-2514.
WANG W H, KE X, PEI J Y.Application investigation of perfectly matched layer absorbing boundary condition[J]. Progress in geophysics, 2013, 28(5): 2508-2514.
[24] MARGHERITINI L, MARTINELLI L, LAMBERTI A, et al.Scour around monopile foundation for off-shore wind turbine in presence of steady and tidal currents[C]//Coastal Engineering 2006. San Diego, California, USA, 2007: 2330-2342.
[25] MILLER JR W.Model for the time rate of local sediment scour at a cylindrical structure[M]. Gainesville: University of Florida, 2003.
[26] 陈可洋, 王建民, 关昕, 等. 逆时偏移技术在VSP数据成像中的应用[J]. 石油地球物理勘探, 2018, 53(增刊1): 89-93.
CHEN K Y, WANG J M, GUAN X, et al.VSP data imaging with reverse time migration[J]. Oil geophysical prospecting, 2018, 53(S1): 89-93.
[27] 马博文, 黄清华. 探地雷达叠前逆时偏移成像影响因素研究[J]. 北京大学学报(自然科学版), 2023, 59(3): 388-394.
MA B W, HUANG Q H.Study on influencing factors of pre-stack reverse time migration imaging of ground penetrating radar[J]. Acta Scientiarum Naturalium Universitatis Pekinensis(natural science edition), 2023, 59(3): 388-394.
[28] 杨仁虎. 逆时偏移随机噪声影响分析[J]. 地球物理学进展, 2021, 36(6): 2618-2627.
YANG R H.Analysis of effect of random noise on reverse time migration[J]. Progress in geophysics, 2021, 36(6): 2618-2627.
[29] MELVILLE B W, RAUDKIVI A J.Flow characteristics in local scour at bridge piers[J]. Journal of hydraulic research, 1977, 15(4): 373-380.
PDF(4495 KB)

Accesses

Citation

Detail

Sections
Recommended

/