CAPACITY OPTIMIZATION OF COMBINED POWER-HEATING-OXYGEN SYSTEM FOR PLATEAU HOTEL BUILDING

Luo Xi, Pan Mengzhao, Liu Yanfeng

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (8) : 115-122.

PDF(1318 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1318 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (8) : 115-122. DOI: 10.19912/j.0254-0096.tynxb.2023-0536

CAPACITY OPTIMIZATION OF COMBINED POWER-HEATING-OXYGEN SYSTEM FOR PLATEAU HOTEL BUILDING

  • Luo Xi1,2, Pan Mengzhao1, Liu Yanfeng1,2
Author information +
History +

Abstract

Taking a hotel in Qilian County, Qinghai Province as an example, this study established an optimal capacity configuration model of the combined power-heating-oxygen system for plateau hotel building with the aim of minimum total annual cost. The genetic algorithm was used to solve the optimization model to determine the optimal capacity configuration of the system. Results show that: Compared with the conventional combined power-heating system, the combined power-heating-oxygen system reduces the power supply ratio of the power grid from 76.9% to 29.8%. Compared with the conventional combined power-heating system, the combined power-heating-oxygen system saw reductions of 1.2% in its total annual cost, in which the annual investment cost of the system increases by 4.1% and the annual operation cost of the system decreases by 5.3%. The total annual cost of the combined power-heating-oxygen system is affected significantly by the oxygen purchase price; When the oxygen purchase price is higher than 8 yuan/(Nm3), the combined power-heating-oxygen system has more economica advantages than the conventional combined power-heating system.

Key words

solar energy / hydrogen storage / optimal design / combined power-heating-oxygen system / plateau hotel

Cite this article

Download Citations
Luo Xi, Pan Mengzhao, Liu Yanfeng. CAPACITY OPTIMIZATION OF COMBINED POWER-HEATING-OXYGEN SYSTEM FOR PLATEAU HOTEL BUILDING[J]. Acta Energiae Solaris Sinica. 2024, 45(8): 115-122 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0536

References

[1] 柳金昊, 信忠保, 黄艳章, 等. 青藏高原短居人群缺氧风险性评价[J]. 科技导报, 2022, 40(14): 92-100.
LIU J H, XIN Z B, HUANG Y Z, et al.Risk of hypoxia of short-term residents in Qinghai-Tibet Plateau[J]. Science & technology review, 2022, 40(14): 92-100.
[2] SHENG Y, MIAO Z Z, ZHANG J Y, et al.Energy consumption model and energy benchmarks of five-star hotels in China[J]. Energy and buildings, 2018, 165: 286-292.
[3] PABLO-ROMERO M D P, POZO-BARAJAS R, SÁNCHEZ-RIVAS J. Tourism and temperature effects on the electricity consumption of the hospitality sector[J]. Journal of cleaner production, 2019, 240: 118168.
[4] XIE J T, PAN Y Q, JIA W Q, et al.Energy-consumption simulation of a distributed air-conditioning system integrated with occupant behavior[J]. Applied energy, 2019, 256: 113914.
[5] ZHANG Y S, HUA Q S, SUN L, et al.Life cycle optimization of renewable energy systems configuration with hybrid battery/hydrogen storage: a comparative study[J]. Journal of energy storage, 2020, 30: 101470.
[6] 闫娜, 李宝昕, 贾宏刚, 等. 关于氢综合利用系统在西安地区宾馆类场景中的配置方法研究[J]. 电网与清洁能源, 2021, 37(11): 87-93.
YAN N, LI B X, JIA H G, et al.A study on the configuration of hydrogen comprehensive utilization system for the hotel-type scenario in Xi’an[J]. Power system and clean energy, 2021, 37(11): 87-93.
[7] 侯慧, 刘鹏, 黄亮, 等. 考虑不确定性的电-热-氢综合能源系统规划[J]. 电工技术学报, 2021, 36(增刊1): 133-144.
HOU H, LIU P, HUANG L, et al.Planning of electricity-heat-hydrogen integrated energy system considering uncertainties[J]. Transactions of China Electrotechnical Society, 2021, 36(S1): 133-144.
[8] 林俊光, 冯彦皓, 林小杰, 等. 综合能源系统源网荷储动态建模技术进展[J]. 热力发电, 2022, 51(10): 92-102.
LIN J G, FENG Y H, LIN X J, et al.Advances in dynamic modelling of source, grid, load and storage in integrated energy systems[J]. Thermal power generation, 2022, 51(10): 92-102.
[9] 刘艳峰, 王亚星, 罗西, 等. 基于动态运行策略的太阳能分布式供能系统设计运行联合优化[J]. 太阳能学报, 2022, 43(5): 244-251.
LIU Y F, WANG Y X, LUO X, et al.Design and operation optimization of solar distributed energy supply system based on dynamic operation strategy[J]. Acta energiae solaris sinica, 2022, 43(5): 244-251.
[10] 张华俊, 王震, 陈小康, 等. 空气源热泵热水器变工况的实验研究[J]. 制冷空调与电力机械, 2009, 30(3): 1-4.
ZHANG H J, WANG Z, CHEN X K, et al.Experimental investigation of air source heat pump water heater under variable conditions[J]. Refrigeration air conditioning & electric power machinery, 2009, 30(3): 1-4.
[11] 姜益强, 姚杨, 马最良. 空气源热泵结霜除霜损失系数的计算[J]. 暖通空调, 2000, 30(5): 24-26.
JIANG Y Q, YAO Y, MA Z L.Calculation of the loss coefficient for frosting defrosting of air source heat pumps[J]. Journal of HVAC, 2000, 30(5): 24-26.
[12] 青海省发展和改革委员会. 青海省发展和改革委员会关于青海电网2020-2022年目录销售电价和输配电价有关事项的通知[EB/OL]. (2020-12-18)[2023-04-15]. http://fgw.qinghai.gov.cn/zfxxgk/sdzdgknr/fgwwj/202012/t20201218_76157.html.
The Development and Reform Commission of Qinghai Province. Notice of the development and reform commission of Qinghai Province on matters relating to the catalog sales tariff and transmission and distribution tariff of Qinghai power grid from2020 to 2022[EB/OL]. (2020-12-18)[2023-04-15]. http://fgw.qinghai.gov.cn/zfxxgk/sdzdgknr/fgwwj/202012/t20201218_76157.html.
[13] 李丽旻. 青海能源保供与结构调整应并驾齐驱[N]. 中国能源报, 2022-08-22(008).
LI L M. Energy supply and structure adjustment should be handled together in Qinghai province[N]. China Energy News, 2022-08-22(008).
[14] 李文涛. 西部季候性地区供暖方式研究与应用[D]. 西安:西安建筑科技大学, 2021.
LI W T.Research and application of heating mode in western seasonal tourist city[D]. Xi’an: Xi’an University of Architecture and Technology, 2021.
[15] GB/T 50189—2015, 公共建筑节能设计标准[S].
GB/T 50189—2015, Design standard for efficiency of public buildings[S].
[16] GB/T 35414—2017, 高原地区室内空间弥散供氧(氧调)要求[S].
GB/T 35414—2017, Requirements of oxygen conditioning for oxygen diffusion in plateau area[S].
[17] 孙雯雯. 高原高寒地区可再生能源与储能的集成优化[D]. 北京: 中国科学院大学, 2019.
SUN W W.Optimization on energy system integrating renewable energy and energy storage in frigid plateau region[D]. Beijing: University of Chinese Academy of Sciences, 2019.
PDF(1318 KB)

Accesses

Citation

Detail

Sections
Recommended

/