NUMERICAL AND EXPERIMENTAL STUDY OF FLOW FIELD CHARACTERISTICS OF TIDAL ENERGY TURBINES

Jing Fengmei, Wang Yi, Guo Bin, Liu Yang, Li Sirui

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (8) : 660-667.

PDF(2093 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2093 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (8) : 660-667. DOI: 10.19912/j.0254-0096.tynxb.2023-0558

NUMERICAL AND EXPERIMENTAL STUDY OF FLOW FIELD CHARACTERISTICS OF TIDAL ENERGY TURBINES

  • Jing Fengmei1, Wang Yi1, Guo Bin2, Liu Yang3, Li Sirui1
Author information +
History +

Abstract

This article combines numerical simulations and model experiments to study the influence of flow field characteristics on the hydrodynamic performance of turbines in the near-field. The effect of different factors such as inflow velocity and tip-speed ratio on the wake field characteristics in the far-field is analyzed. The research results show that the relative error of power coefficient between the numerical simulation result (0.37) and the experimental result (0.36) is 0.3% at the designed tip speed ratio, and the relative error of drag coefficient between the numerical simulation result (0.73) and the experimental result (0.76) is -4%. There are significant three-dimensional flow phenomena at the blade tip of the tidal turbine, there is a radial velocity (0.24 m/s) at the front of the turbine disk which flows from the blade root to the tip, and there is a radial velocity (0.14 m/s) at the rear of the turbine disk which flows from the blade tip to the root. The downwash flow velocity near the wake zone of the blade tip causes a decrease in the energy conversion efficiency of the turbine. The inflow velocity has no a significant impact on the recovery of axial velocity in the wake region; In the near wake region (within 5D distance from the disk), with the increase of tip-speed ratio, the recovery of axial velocity in the wake shows a gradually decreasing trend. When the distance from the water turbine disk exceeds 10D, the tip-speed ratio does not have a significant effect on the recovery of axial velocity in the wake. However, the increase of tip-speed ratio will shorten the existence time of the blade vortex and make the location where the blade vortex is broken closer to the water turbine disk.

Key words

tidal energy / numerical simulation / model test / water turbine / flow field characteristics / praticle image velocimetry(PIV) / hydrodynamic characteristic

Cite this article

Download Citations
Jing Fengmei, Wang Yi, Guo Bin, Liu Yang, Li Sirui. NUMERICAL AND EXPERIMENTAL STUDY OF FLOW FIELD CHARACTERISTICS OF TIDAL ENERGY TURBINES[J]. Acta Energiae Solaris Sinica. 2024, 45(8): 660-667 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0558

References

[1] 陈娅玲. 潮流水轮机及阵列对周边流场影响研究[D]. 北京: 清华大学, 2015.
CHEN Y L.Study on the effects of tidal turbine and array on the flow field[D]. Beijing: Tsinghua University, 2015.
[2] 杜修茂, 司先才, 袁鹏, 等. 潮流能水轮机转子直径对阵列产能及附近水域的影响研究[J]. 太阳能学报, 2021, 42(11): 442-448.
DU X M, SI X C, YUAN P, et al.Study on influence of rotor diameters of tidal current turbine on array power and adjacent waters[J]. Acta energiae solaris sinica, 2021, 42(11): 442-448.
[3] RADFAR S, PANAHI R, MAJIDI NEZHAD M, et al.A numerical methodology to predict the maximum power output of tidal stream arrays[J]. Sustainability, 2022, 14(3): 1664.
[4] 张亚超. 水平轴潮流能发电机尾流效应的实验研究[D]. 杭州: 浙江大学, 2014.
ZHANG Y C.Experimental study on the wake effect of horizontal axis tidal current turbine[D]. Hangzhou: Zhejiang University, 2014.
[5] 张玉全, 郑源, 孙勇, 等. 基于致动盘的潮流能水轮机尾流场研究[J]. 可再生能源, 2019, 37(1): 144-150.
ZHANG Y Q, ZHENG Y, SUN Y, et al.Research on the wake characteristics of tidal stream turbine based on actuator disk method[J]. Renewable energy resources, 2019, 37(1): 144-150.
[6] MYERS L E, BAHAJ A S.Experimental analysis of the flow field around horizontal axis tidal turbines by use of scale mesh disk rotor simulators[J]. Ocean engineering, 2010, 37(2-3): 218-227.
[7] EL FAJRI O, BOWMAN J, BHUSHAN S, et al.Numerical study of the effect of tip-speed ratio on hydrokinetic turbine wake recovery[J]. Renewable energy, 2022, 182: 725-750.
[8] AHMADI M H B. Influence of upstream turbulence on the wake characteristics of a tidal stream turbine[J]. Renewable energy, 2019, 132: 989-997.
[9] 赵梦晌, 张玉全, 郑源, 等. 安装高程对潮流能水轮机尾迹特性影响试验研究[J]. 太阳能学报, 2022, 43(4): 486-492.
ZHAO M S, ZHANG Y Q, ZHENG Y, et al.Experimental study on influence of turbine setting elevation on wake characteristics of tidal turbine[J]. Acta energiae solaris sinica, 2022, 43(4): 486-492.
[10] 张亮, 王树齐, 马勇, 等. 潮流能水平轴叶轮纵摇运动水动力分析[J]. 哈尔滨工程大学学报, 2015, 36(3): 307-311.
ZHANG L, WANG S Q, MA Y, et al.The pitch hydrodynamic analysis of tidal current energy horizontal axis impeller[J]. Journal of Harbin Engineering University, 2015, 36(3): 307-311.
[11] WANG S Q, LI C Y, XIE Y Y, et al.Research on hydrodynamic characteristics of horizontal axis tidal turbine with rotation and pitching motion under free surface condition[J]. Ocean engineering, 2021, 235: 109383.
[12] 王树齐, 张理, 耿敬, 等. 偏流角对潮流能水轮机水动力影响研究[J]. 太阳能学报, 2016, 37(1): 249-255.
WANG S Q, ZHANG L, GENG J, et al.Study on effect of yaw angle on hydrodynamics of tidal current turbine[J]. Acta energiae solaris sinica, 2016, 37(1): 249-255.
[13] GUO B, WANG D Z, ZHOU X, et al.Performance evaluation of a tidal current turbine with bidirectional symmetrical foils[J]. Water, 2019, 12(1): 22.
[14] 郭彬, 王大政, 夏岚, 等. 水平轴潮流涡轮池壁效应修正方法分析[J]. 太阳能学报, 2022, 43(9): 382-390.
GUO B, WANG D Z, XIA L, et al.Analysis of blockage correction methods for horizontal axis tidal stream turbine[J]. Acta energiae solaris sinica, 2022, 43(9): 382-390.
[15] FERZIGER J H, PERIĆ M.Further discussion of numerical errors in CFD[J]. International journal for numerical methods in fluids, 1996, 23(12): 1263-1274.
[16] JING F M, MA W J, ZHANG L, et al.Experimental study of hydrodynamic performance of full-scale horizontal axis tidal current turbine[J]. Journal of hydrodynamics, series B, 2017, 29(1): 109-117.
PDF(2093 KB)

Accesses

Citation

Detail

Sections
Recommended

/