STUDY ON HYSTERETIC EFFECT AND HORIZONTAL BEARING CAPACITY OF PILE FOUNDATION FOR OFFSHORE WIND TURBINE UNDER WAVE LOAD

Jiang Tong, He Tianle, Wang Xuan, Wang Jing

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (8) : 546-553.

PDF(20038 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(20038 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (8) : 546-553. DOI: 10.19912/j.0254-0096.tynxb.2023-0579

STUDY ON HYSTERETIC EFFECT AND HORIZONTAL BEARING CAPACITY OF PILE FOUNDATION FOR OFFSHORE WIND TURBINE UNDER WAVE LOAD

  • Jiang Tong, He Tianle, Wang Xuan, Wang Jing
Author information +
History +

Abstract

Taking offshore wind power pile foundation as the research object and using the self-designed horizontal loading device to simulate wave load and using particle image velocimetry (PIV) technique to carry out scaled model tests, the cyclic deformation characteristics of soil around the pile and the variation of horizontal bearing capacity of offshore wind turbine pile foundation before and after loading were studied in this study. The results reveal that the cumulative rotation angle of pile top exhibits a three-stage variation characteristic of linear growth, slow growth and steady development with the number of loading. The soil around pile exhibits a classic two-region damage pattern. The variations in loading amplitude have a considerable impact on the soil displacement vector field and displacement nephogram effect range in the passive area to the right of the pile. Hysteresis is clearly visible in the load displacement curve at the top of the pile, meanwhile, as loading times increase and cause cumulative displacement, the hysteresis circle shifts to the right. Accompanied by the reduction of the hysteresis loops area and the increase of the secant stiffness, the soil varies from plastic deformation to elastic deformation as the dominant change. After cyclic loading, there is a sizable pinch in the hysteresis loop, which weakens the energy dissipation capacity. In comparison to before loading, the pile foundation’s horizontal bearing capacity and elastic deformation capacity have greatly increase.

Key words

offshore wind farms / wave loads / pile foundations / bearing capacity / hysteretic variation

Cite this article

Download Citations
Jiang Tong, He Tianle, Wang Xuan, Wang Jing. STUDY ON HYSTERETIC EFFECT AND HORIZONTAL BEARING CAPACITY OF PILE FOUNDATION FOR OFFSHORE WIND TURBINE UNDER WAVE LOAD[J]. Acta Energiae Solaris Sinica. 2024, 45(8): 546-553 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0579

References

[1] MATLOCK H.Correlation for design of laterally loaded piles in soft clay[C]//Proceedings of 2nd Offshore Technology Conference, Houston, 1970.
[2] REESE L, COX W, KOOP F.Analysis of laterally loaded piles in sand[C]//Procedings of 6th Offshore Technology Conference, Houston, 1974.
[3] 王惠初, 武冬青, 田平. 粘土中横向静载桩P-Y曲线的一种新的统一法[J]. 河海大学学报, 1991, 19(1): 9-17.
WANG H C, WU D Q, TIAN P.A new unitedd method of P-Y curves of laterally statically loaded piles in clay[J]. Journal of Hohai University (natural sciences), 1999, 19(1): 9-17.
[4] 朱斌, 朱瑞燕, 罗军, 等. 海洋高桩基础水平大变位性状模型试验研究[J]. 岩土工程学报, 2010, 32(4): 521-530.
ZHU B, ZHU R Y, LUO J, et.al. Model tests on characteristics of ocean and offshore elevated piles with large lateral deflection[J]. Chinese journal of geotechnical engineering, 2010, 32(4): 521-530.
[5] 陈仁朋, 顾明, 孔令刚, 等. 水平循环荷载下高桩基础受力性状模型试验研究[J]. 岩土工程学报, 2012, 34(11): 1990-1996.
CHEN R P, GU M, KONG L G, et.al. Large-scale model tests on high-rise platform pile groups under cyclic lateral loads[J]. Chinese journal of geotechnical engineering, 2012, 34(11): 1990-1996.
[6] 陈晓路, 管春雨, 张管武, 等. 近海风力机水平受荷单桩简化p-y曲线研究[J]. 太阳能学报, 2022, 43(5): 366-371.
CHEN X L, GUAN C Y, ZHANG G W, et al.Research on simplified p-y curves of lateral loaded monopile for offshore wind turbines[J]. Acta energiae solaris sinica, 2022, 43(5): 366-371.
[7] 姜贞强, 何奔, 单治钢, 等. 黄海海域极端荷载下海上风力机结构累积变形及疲劳性状:3种典型基础对比研究[J]. 太阳能学报, 2021, 42(4): 386-395.
JIANG Z Q, HE B, SHAN Z G, et al.Cumulative deformation and fatigue behaviour of offshore wind turbine structure subjected under extreme loading in yellow sea: a comparative study between three typical foundations[J]. Acta energiae solaris sinica, 2021, 42(4): 386-395.
[8] 翟恩地, 徐海滨, 郭胜山, 等. 响水海上风电钢管桩基础水平承载特性对比研究[J]. 太阳能学报, 2019, 40(3): 681-686.
ZHAI E D, XU H B, GUO S S, et al.Comparative study on horizontal bearing capacity of steel pipe pile for Xiangshui offshore wind farm[J]. Acta energiae solaris sinica, 2019, 40(3): 681-686.
[9] LEBLANC C, HOULSBY G T, BYRNE B W.Response of stiff piles in sand to long-term cyclic lateral loading[J]. Géotechnique, 2010, 60(2): 79-90.
[10] 张勋, 黄茂松. 水平循环荷载下砂土中沉井加桩基础累积变形特性[J]. 岩石力学与工程学报, 2016, 35(6): 1265-1272.
ZHANG X, HUANG M S.Cumulative deformation of a caisson-piles composite foundation in sand subjected to cyclic lateral loading[J]. Chinese journal of rock mechanics and engineering, 2016, 35(6): 1265-1272.
[11] 李大勇, 张景睿, 张雨坤, 等. 饱和砂土中裙式吸力基础水平循环特性和累积转角变化规律[J]. 岩土力学, 2021, 42(3): 611-619.
LI D Y, ZHANG J R, ZHANG Y K, et.al. Bearing behavior and accumulated rotation of modified suction caisson (MSC) in saturated sand under cyclic loading[J]. Rock and soil mechanics, 2021, 42(3): 611-619.
[12] WHITE D J, TAKE W A, BOLTON M D.Soil deformation measurement using particle image velocimetry (PIV) and photogrammetry[J]. Géotechnique, 2003, 53(7): 619-631.
[13] YUAN B X, CHEN R, LI J H, et al.A hydraulic gradient similitude testing system for studying the responses of a laterally loaded pile and soil deformation[J]. Environmental earth sciences, 2016, 75: 1-7.
[14] 郑金海, 丁星宇, 管大为, 等. 循环荷载作用下海上风机单桩基础周围砂土沉降与对流特性[J]. 河海大学学报(自然科学版), 2020, 48(6): 552-561.
ZHENG J H, DING X Y, GUAN D W, et al.Characteristics of soil subsidence and convective motion around offshore windfarm monopile foundations subjected to long-term cyclic loading[J]. Journal of Hohai University (natural sciences), 2020, 48(6): 552-561.
[15] 李旭华. 基于PIV技术的砂土中支盘桩抗压承载特性研究[D]. 郑州: 华北水利水电大学, 2021.
LI X H.The study on compressive bearing capacity of branch pilein sand based on particle image velocity technology[D]. Zhengzhou: North China University of Water Resources and Electric Power, 2021.
[16] 曹兆虎, 孔纲强, 刘汉龙, 等. 基于PIV技术的沉桩过程土体位移场模型试验研究[J]. 工程力学, 2014, 31(8): 168-174.
CAO Z H, KONG G Q, LIU H L, et al.Model test on deformation characteristic of pile driving in sand using PIV technique[J]. Engineering mechanics, 2014, 31(8): 168-174.
[17] 姜彤, 李博, 杨晓燕, 等. 静压桩沉桩对既有桩桩周土影响的PIV试验研究[J]. 地下空间与工程学报, 2018, 14(5): 1185-1194.
JIANG T, LI B, YANG X Y, et al.Experimental study on the influence of pile driving by static pressure pile on soil near the existing pile wsing PIV technique[J]. Chinese journal of underground space and engineering, 2018, 14(5): 1185-1194.
[18] 袁炳祥, 樊立韬, 李志杰, 等. 层状地基中水平受荷桩-土相互作用试验[J]. 中国公路学报, 2022, 35(11): 62-72.
YUAN B X, FAN L T, LI Z J, et al.Experimental study on pile-soil interaction under horizontal load in layered foundation[J]. China journal of highway and transport, 2022, 35(11): 62-72.
[19] 袁炳祥, 李志杰, 陈伟杰, 等. 基于PIV技术与分形理论的桩-土系统水平循环受荷模型试验研究[J]. 岩石力学与工程学报, 2023, 42(2): 466-482.
YUAN B X, LI Z J, CHEN W J, et al.Experimental study on lateral cyclic loading model of pile-soil system based on PIV technique and fractal theory[J]. Chinese journal of rock mechanics and engineering, 2023, 42(2): 466-482.
[20] 张纪蒙, 张陈蓉, 张凯. 砂土中大直径单桩水平循环加载模型试验研究[J]. 岩土力学, 2021, 42(3): 783-789.
ZHANG J M, ZHANG C R, ZHANG K.Model tests of large-diameter single pile under horizontal cyclic loading in sand[J]. Rock and soil mechanics, 2021, 42(3): 783-789.
[21] CUÉLLAR P. Behaviour of pile foundations for offshore wind turbines under cyclic lateral loading[J]. Berlin: Thesis, 2011.
[22] LEBLANC C, BYRNE B W, HOULSBY G T.Response of stiff piles to random two-way lateral loading[J]. Géotechnique, 2010, 60(9): 715-721.
PDF(20038 KB)

Accesses

Citation

Detail

Sections
Recommended

/