RESEARCH PROGRESS OF SOLAR-DRIVEN INTERFACE EVAPORATION FOR SEAWATER DESALINATION

Sun Mengxi, Chen Zhili, Chen Li, Tang Shan, Li Guangxue

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (8) : 423-431.

PDF(1083 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1083 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (8) : 423-431. DOI: 10.19912/j.0254-0096.tynxb.2023-0592

RESEARCH PROGRESS OF SOLAR-DRIVEN INTERFACE EVAPORATION FOR SEAWATER DESALINATION

  • Sun Mengxi, Chen Zhili, Chen Li, Tang Shan, Li Guangxue
Author information +
History +

Abstract

Solar interface evaporation is a process of converting solar energy into heat energy and using materials with photothermal conversion properties to locally heat water at the interface to promote evaporation, which has broad application prospects in the field of seawater desalination. To gain a deeper understanding of the development and application of solar interface evaporation seawater desalination technology, this paper introduces the research progress of solar interface evaporation from the perspectives of light absorption and thermal management, and discusses the development direction and application prospects of interface evaporation seawater desalination technology. The paper summarizes the influence of different categories and structures of photothermal conversion materials on solar conversion efficiency, and summarizes the influence of different forms of heat loss on interface evaporation rate. The challenges and future development of solar interface evaporation seawater desalination technology are discussed, with the aim of providing reference for the practical application of subsequent seawater desalination technology.

Key words

solar energy / seawater desalination / interface evaporation / photothermal conversion materials / thermal management

Cite this article

Download Citations
Sun Mengxi, Chen Zhili, Chen Li, Tang Shan, Li Guangxue. RESEARCH PROGRESS OF SOLAR-DRIVEN INTERFACE EVAPORATION FOR SEAWATER DESALINATION[J]. Acta Energiae Solaris Sinica. 2024, 45(8): 423-431 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0592

References

[1] ELIASSON J.The rising pressure of global water shortages[J]. Nature, 2015, 517(7532): 6.
[2] DOORNBUSCH G, van der WAL M, TEDESCO M, et al. Multistage electrodialysis for desalination of natural seawater[J]. Desalination, 2021, 505: 114973.
[3] LIN S S, ZHAO H Y, ZHU L P, et al.Seawater desalination technology and engineering in China: a review[J]. Desalination, 2021, 498: 114728.
[4] LYU J, CHEN Z L, TANG J, et al.Study on the superhydrophilic modification and enhanced corrosion resistance method of aluminum alloy distillation desalination tubes[J]. Surface and coatings technology, 2022, 446: 128770.
[5] 孔慧, 杨锦蕊, 陈靖, 等. 太阳能热法海水淡化发展的关键路径[J]. 太阳能学报, 2023, 44(4): 479-486.
KONG H, YANG J R, CHEN J, et al.Critical path for development of solar thermal seawater desalination[J]. Acta energiae solaris sinica, 2023, 44(4): 479-486.
[6] 叶鸿烈, 郑彦捷, 赵云胜, 等. 太阳能海水淡化技术的经济性模型与影响因素分析[J]. 太阳能学报, 2019, 40(5): 1225-1231.
YE H L, ZHENG Y J, ZHAO Y S, et al.Research on economic model and influencing factors of solar desalination technology[J]. Acta energiae solaris sinica, 2019, 40(5): 1225-1231.
[7] 王刚, 董博祎, 姜铁骝, 等. S-CO2布雷顿循环太阳能电力淡水系统(<inline-graphic xlink:href="-45-8-423/img_1.png"/>)分析[J]. 太阳能学报, 2022, 43(7): 197-202.
WANG G, DONG B Y, JIANG T L, et al.Exergy analysis of S-CO2 brayton cycle solar system for electricity and fresh water productions[J]. Acta energiae solaris sinica, 2022, 43(7): 197-202.
[8] GHASEMI H, NI G, MARCONNET A M, et al.Solar steam generation by heat localization[J]. Nature communications, 2014, 5: 4449.
[9] CHEN C J, KUANG Y D, HU L B.Challenges and opportunities for solar evaporation[J]. Joule, 2019, 3(3): 683-718.
[10] SHI L, WANG X Z, HU Y W, et al.Solar-thermal conversion and steam generation: a review[J]. Applied thermal engineering, 2020,179: 115691.
[11] PAN C, YANG Y W, XIE M Z, et al.Optimization of evaporation and condensation architectures for solar-driven interfacial evaporation desalination[J]. Membranes, 2022, 12(9): 899.
[12] KARAMI S, ROGHABADI F A, MALEKI M, et al.Materials and structures engineering of sun-light absorbers for efficient direct solar steam generation[J]. Solar energy, 2021, 225: 747-772.
[13] HUANG Q C, LIANG X C, YAN C Y, et al.Review of interface solar-driven steam generation systems: high-efficiency strategies, applications and challenges[J]. Applied energy, 2021, 283: 116361.
[14] DJELLABI R, NOUREEN L, DAO V, et al.Recent advances and challenges of emerging solar-driven steam and the contribution of photocatalytic effect[J]. Chemical engineering journal, 2022, 431: 1340241.
[15] GEISE G M, LEE H S, MILLER D J, et al.Water purification by membranes: the role of polymer science[J]. Journal of polymer science part B: polymer physics, 2010, 48(15): 1685-1718.
[16] GUEYMARD C A.The sun’s total and spectral irradiance for solar energy applications and solar radiation models[J]. Solar energy, 2004, 76(4): 423-453.
[17] 李欣远, 纪穆为, 王虹智, 等. 近红外光热转换纳米晶研究进展[J]. 中国光学, 2017, 10(5): 541-554.
LI X Y, JI M W, WANG H Z, et al.Research progress of near-infrared photothermal conversion nanocrystals[J]. Chinese optics, 2017, 10(5): 541-554, 701.
[18] ZHU G L, XU J J, ZHAO W L, et al.Constructing black titania with unique nanocage structure for solar desalination[J]. ACS applied materials & interfaces, 2016, 8(46): 31716-31721.
[19] AZIZNEZHAD M, GOHARSHADI E, NAMAYANDEH-JORABCHI M.Surfactant-mediated prepared VO2 (M) nanoparticles for efficient solar steam generation[J]. Solar energy materials and solar cells, 2020, 211: 110515.
[20] CHEN C L, ZHOU L, YU J Y, et al.Dual functional asymmetric plasmonic structures for solar water purification and pollution detection[J]. Nano energy, 2018, 51: 451-456.
[21] MENG F L, GAO M M, DING T P, et al.Modular deformable steam electricity cogeneration system with photothermal, water, and electrochemical tunable multilayers[J]. Advanced functional materials, 2020, 30(32): 2002867.
[22] ZHANG Q, XU W L, WANG X B.Carbon nanocomposites with high photothermal conversion efficiency[J]. Science China materials, 2018, 61(7): 905-914.
[23] WANG T Y, HUANG H B, LI H L, et al.Carbon materials for solar-powered seawater desalination[J]. New carbon materials, 2021,36(4): 683-701.
[24] 朱盟盟. 碳基太阳能吸收材料的制备及其光热性能研究[D]. 青岛:青岛科技大学, 2018.
ZHU M M.Preparation and photothermal properties of carbon-based solar absorption materials[D]. Qingdao: Qingdao University of Science & Technology, 2018.
[25] CHEN Q M, PEI Z Q, XU Y S, et al.A durable monolithic polymer foam for efficient solar steam generation[J]. Chemical science, 2017, 9(3): 623-628.
[26] ZOU Y, YANG P, YANG L, et al.Boosting solar steam generation by photothermal enhanced polydopamine/wood composites[J]. Polymer, 2021, 217: 123464.
[27] UMLAUFF M, HOFFMANN J, KALT H, et al.Direct observation of free-exciton thermalization in quantum-well structures[J]. Physical review B, 1998, 57(3): 1390-1393.
[28] OU G, LI Z W, LI D K, et al.Photothermal therapy by using titanium oxide nanoparticles[J]. Nano research, 2016, 9(5): 1236-1243.
[29] ASAHI R, MORIKAWA T, OHWAKI T, et al.Visible-light photocatalysis in nitrogen-doped titanium oxides[J]. Science, 2001, 293(5528): 269-271.
[30] CHEN X B, LIU L, HUANG F Q.Black titanium dioxide (TiO2) nanomaterials[J]. Chemicnterfaces, 2016, 8(46): 31716-31721.
[31] CHANG Y H, WANG Z G, SHI Y, et al.Hydrophobic W18O49 mesocrystal on hydrophilic PTFE membrane as an efficient solar steam generation device under one sun[J]. Journal of materials chemistry A, 2018, 6(23): 10939-10946.
[32] SHANG M Y, LI N, ZHANG S D, et al.Full-spectrum solar-to-heat conversion membrane with interfacial plasmonic heating ability for high-efficiency desalination of seawater[J]. ACS applied energy materials, 2018, 1(1): 56-61.
[33] WANG J, LI Y Y, DENG L, et al.High-performance photothermal conversion of narrow-bandgap Ti2O3 nanoparticles[J]. Advanced materials, 2017, 29(3): 1603730.
[34] LIU H W, CHEN C J, WEN H, et al.Narrow bandgap semiconductor decorated wood membrane for high-efficiency solar-assisted water purification[J]. Journal of materials chemistry A, 2018,6(39): 18839-18846.
[35] LI R Y, ZHANG L B, SHI L, et al.MXene Ti3C2: an effective 2D light-to-heat conversion material[J]. ACS nano, 2017, 11(4): 3752-3759.
[36] YANG X D, YANG Y B, FU L N, et al.An ultrathin flexible 2D membrane based on single-walled nanotube-MoS2 hybrid film for high-performance solar steam generation[J]. Advanced functional materials, 2018, 28(3): 1704505.
[37] 万武波, 纪冉, 何锋. 石墨烯基分离膜研究进展[J]. 化学进展, 2017, 29(8): 833-845.
WAN W B, JI R, HE F.Recent advances in graphene based separation membranes[J]. Progress in chemistry, 2017, 29(8): 833-845.
[38] FAN X Q, YANG Y, SHI X L, et al.A MXene-based hierarchical design enabling highly efficient and stable solar-water desalination with good salt resistance[J]. Advanced functional materials, 2020, 30(52): 2007110.
[39] CHEN W S, OUYANG J, LIU H, et al.Black phosphorus nanosheet-based drug delivery system for synergistic photodynamic/photothermal/chemotherapy of cancer[J]. Advanced materials, 2017, 29(5): 1603864
[40] BOYER D, TAMARAT P, MAALI A, et al.Photothermal imaging of nanometer-sized metal particles among scatterers[J]. Science, 2002,297(5584): 1160-1163.
[41] BOYER D, TAMARAT P, MAALI A, et al.Imaging single metal nanoparticles in scattering media by photothermal interference contrast[J]. Physica E: low-dimensional systems and nanostructures, 2003, 17(1-4): 537-540.
[42] LIU G H, XU J L, CHEN T, et al.Progress in thermoplasmonics for solar energy applications[J]. Physics reports, 2022, 981: 1-50.
[43] ZHU H W, GE J, ZHAO H Y, et al.Sponge-templating synthesis of sandwich-like reduced graphene oxide nanoplates with confined gold nanoparticles and their enhanced stability for solar evaporation[J]. Science China materials, 2020, 63(10): 1957-1965.
[44] CAO H X, GUI T L, WANG W Y, et al.Green-synthesizing Ag nanoparticles by watermelon peel extract and their application in solar-driven interfacial evaporation for seawater desalination[J]. Materials research express, 2020, 7(4): 045005.
[45] 杨兆华, 成鸿静, 杨弋, 等. 聚乙烯醇载银海绵的制备及界面光热驱动水蒸发性能[J]. 高等学校化学学报, 2022, 43(10): 267-273.
YANG Z H, CHENG H J, YANG Y, et al.Preparation of silver-loaded polyvinyl alcohol sponge and its interfacial photothermal driven water evaporation performance[J]. Chemical journal of chinese universities, 2022, 43(10): 267-273.
[46] 满石清, 肖桂娜. 帽状铜纳米粒子的制备及表面增强拉曼散射活性研究[J]. 无机化学学报, 2009, 25(7): 1279-1283.
MAN S Q, XIAO G N.Preparation and surface-enhanced Raman scattering activities of cap-shaped copper nanoparticles[J]. Chinese journal of inorganic chemistry, 2009, 25(7): 1279-1283.
[47] ZHANG D F, ZHANG Y H, GUO L, et al.Synthesis of α-ZnS nanoparticles and their photoluminescence and Raman properties[J]. Acta physico-chimica sinica, 2007,23(12): 1985-1988.
[48] 杨凤珠, 徐敏敏, 袁亚仙, 等. 离子液体中铜纳米粒子膜的电沉积制备及表面增强拉曼光谱[J]. 高等学校化学学报, 2012, 33(9): 2047-2050.
YANG F Z, XU M M, YUAN Y X, et al.Electrodeposition of Cu nanoparticles layers in ionic liquid and surface enhanced Raman spectroscopic properties[J]. Chemical journal of Chinese universities, 2012, 33(9): 2047-2050.
[49] LI Z K, ZHENG M, WEI N, et al.Broadband-absorbing WO3-x nanorod-decorated wood evaporator for highly efficient solar-driven interfacial steam generation[J]. Solar energy materials and solar cells, 2020, 205: 110254.
[50] ZHANG X F, NIU S P, DENG Z Q, et al.Preparation of Al2O3 nanowires on 7YSZ thermal barrier coatings against CMAS corrosion[J]. Transactions of Nonferrous Metals Society of China, 2019, 29(11): 2362-2370.
[51] CHEN C J, LIU H Y, WANG H T, et al.A scalable broadband plasmonic cuprous telluride nanowire-based hybrid photothermal membrane for efficient solar vapor generation[J]. Nano energy, 2021, 84: 105868.
[52] ZHOU L, TAN Y L, WANG J Y, et al.3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination[J]. Nature photonics, 2016, 10(6): 393-398.
[53] LI Z T, WANG C B.Multi-scale Ag/CuO photothermal materials: preparation and application in seawater desalination[J]. Chinese journal of inorganic chemistry, 2020, 36(8): 1457-1464.
[54] HAMDAN M A, AL MOMANI A M, AYADI O, et al. Enhancement of solar water desalination using copper and aluminum oxide nanoparticles[J]. Water, 2021, 13(14): 1914.
[55] XIONG H, XIE X W, WANG M, et al.CVD grown carbon nanotubes on reticulated skeleton for brine desalination[J]. Acta physico-chimica sinica, 2020, 36(9): 1912008.
[56] JIANG F, LIU H, LI Y J, et al.Lightweight, mesoporous, and highly absorptive all-nanofiber aerogel for efficient solar steam generation[J]. ACS applied materials & interfaces, 2018, 10(1): 1104-1112.
[57] WANG Y C, ZHANG L B, WANG P.Self-floating carbon nanotube membrane on macroporous silica substrate for highly efficient solar-driven interfacial water evaporation[J]. ACS sustainable chemistry & engineering, 2016, 4(3): 1223-1230.
[58] QIN D D, ZHU Y J, CHEN F F, et al.Self-floating aerogel composed of carbon nanotubes and ultralong hydroxyapatite nanowires for highly efficient solar energy-assisted water purification[J]. Carbon, 2019, 150: 233-243.
[59] 宗美林, 叶晓江, 常怀钟, 等. 水基碳纳米管纳米流体在室外自然条件下的光热性能研究[J]. 太阳能学报, 2020, 41(5): 48-53.
ZONG M L, YE X J, CHANG H Z, et al.Study on photo-thermal conversion characteristics of water-based carbon nanotubes in outdoor natural condition[J]. Acta energiae solaris sinica, 2020, 41(5): 48-53.
[60] ZHANG P P, XU Q, LIAO Q H, et al.Interface-enhanced distillation beyond tradition based on well-arranged graphene membrane[J]. Science China materials, 2020, 63(10): 1948-1956.
[61] LIM D K, BARHOUMI A, WYLIE R G, et al.Enhanced photothermal effect of plasmonic nanoparticles coated with reduced graphene oxide[J]. Nano letters, 2013, 13(9): 4075-4079.
[62] ZHU M W, LI Y J, CHEN G, et al.Tree-inspired design for high-efficiency water extraction[J]. Advanced materials, 2017, 29(44): 1704107.
[63] QIU P X, LIU F L, XU C M, et al.Porous three-dimensional carbon foams with interconnected microchannels for high-efficiency solar-to-vapor conversion and desalination[J]. Journal of materials chemistry A, 2019, 7(21): 13036-13042.
[64] XU N, HU X Z, XU W C, et al.Mushrooms as efficient solar steam-generation devices[J]. Advanced materials, 2017, 29(28): 1606762.
[65] SONG C Y, HAO L, ZHANG B Y, et al.High-performance solar vapor generation of Ni/carbon nanomaterials by controlled carbonization of waste polypropylene[J]. Science China materials, 2020,63(5): 779-793.
[66] HUANG X Y, YU Y H, de LLERGO O L, et al. Facile polypyrrole thin film coating on polypropylene membrane for efficient solar-driven interfacial water evaporation[J]. RSC advances, 2017,7(16): 9495-9499.
[67] ZHANG L B, TANG B, WU J B, et al.Hydrophobic light-to-heat conversion membranes with self-healing ability for interfacial solar heating[J]. Advanced materials, 2015, 27(33): 4889-4894.
[68] WU Y Z, SHEN L, ZHANG C X, et al.Polyacid doping-enabled efficient solar evaporation of polypyrrole hydrogel[J]. Desalination, 2021, 505: 114766.
[69] LIU F, LIANG W D, WANG C J, et al.Superwetting monolithic hypercrosslinked polymers nanotubes with high salt-resistance for efficient solar steam generation[J]. Solar energy materials and solar cells, 2021, 221: 110913.
[70] LI Y R, JIN X, LI W, et al.Biomimetic hydrophilic foam with micro/nano-scale porous hydrophobic surface for highly efficient solar-driven vapor generation[J]. Science China materials, 2022, 65(4): 1057-1067.
[71] WEI C J, ZHANG X H, MA S Y, et al.Ultra-robust vertically aligned three-dimensional (3D) Janus hollow fiber membranes for interfacial solar-driven steam generation with salt-resistant and multi-media purification[J]. Chemical engineering journal, 2021, 425: 130118.
[72] GHIM D, WU X H, SUAZO M, et al.Achieving maximum recovery of latent heat in photothermally driven multi-layer stacked membrane distillation[J]. Nano energy, 2021, 80: 105444.
[73] ZHANG C, OU Y, LEI W X, et al.CuSO4/H2O2-induced rapid deposition of polydopamine coatings with high uniformity and enhanced stability[J]. Angewandte Chemie International Edition, 2016, 55(9): 3054-3057.
[74] GUO M X, WU J B, LI F H, et al.A low-cost lotus leaf-based carbon film for solar-driven steam generation[J]. New carbon materials, 2020, 35(4): 436-443.
[75] JIANG C J, DUAN Z W, ZHANG Z Z, et al.Effect of surfactants on dispersing properties in alcohol solvent for silver nanopowders[J]. Rare metal materials and engineering, 2007, 36(4): 724-727.
[76] ZENG Y, YAO J F, HORRI B A, et al.Solar evaporation enhancement using floating light-absorbing magnetic particles[J]. Energy & environmental science, 2011, 4(10): 4074-4078.
[77] SHAO Z D, ZHANG Y, CHENG X.Advances in mechanically enhanced silica aerogel monoliths as thermal insulating materials[J]. Progress in chemistry, 2014, 26(8): 1329-1338.
[78] PENG F, JIANG Y G, FENG J, et al.Research progress on alumina aerogel composites for high-temperature thermal insulation[J]. Journal of inorganic materials, 2021, 36(7): 673-684.
[79] QI C S, LUO C, TAO Y, et al.Capillary shrinkage of graphene oxide hydrogels[J]. Science China materials, 2020, 63(10): 1870-1877.
[80] ZHANG Z, MU P, HE J X, et al.Facile and scalable fabrication of surface-modified sponge for efficient solar steam generation[J]. ChemSusChem, 2019, 12(2): 426-433.
[81] QIAO L F, LI N, LUO L, et al.Design of monolithic closed-cell polymer foams via controlled gas-foaming for high-performance solar-driven interfacial evaporation[J]. Journal of materials chemistry A, 2021,9(15): 9692-9705.
[82] LI X Q, XU W C, TANG M Y, et al.Graphene oxide-based efficient and scalable solar desalination under one sun with a confined 2D water path[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(49): 13953-13958.
[83] NI G, LI G, BORISKINA S V, et al.Steam generation under one sun enabled by a floating structure with thermal concentration[J]. Nature energy, 2016, 1(9): 16126.
[84] HONG S, SHI Y, LI R Y, et al.Nature-inspired, 3D origami solar steam generator toward near full utilization of solar energy[J]. ACS applied materials & interfaces, 2018,10(34): 28517-28524.
[85] LI W G, LI Z, BERTELSMANN K, et al.Portable low-pressure solar steaming-collection unisystem with polypyrrole origamis[J]. Advanced materials, 2019, 31(29): e1900720.
[86] SHI Y, LI R Y, JIN Y, et al.A 3D photothermal structure toward improved energy efficiency in solar steam generation[J]. Joule, 2018, 2(6): 1171-1186.
[87] ZHANG P P, LIAO Q H, YAO H Z, et al.Three-dimensional water evaporation on a macroporous vertically aligned graphene pillar array under one sun[J]. Journal of materials chemistry A, 2018, 6(31): 15303-15309.
PDF(1083 KB)

Accesses

Citation

Detail

Sections
Recommended

/