ANALYSIS AND IMPROVEMENT STRATEGY OF VSG ACTIVE POWER RESPONSE CHARACTERISTICS UNDER WEAK GRID

Shi Rongliang, Lan Caihua, Zhou Lujing, Liu Weisha, Zhou Qifeng

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (8) : 182-189.

PDF(1720 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1720 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (8) : 182-189. DOI: 10.19912/j.0254-0096.tynxb.2023-0593

ANALYSIS AND IMPROVEMENT STRATEGY OF VSG ACTIVE POWER RESPONSE CHARACTERISTICS UNDER WEAK GRID

  • Shi Rongliang1,2, Lan Caihua1,2, Zhou Lujing1,2, Liu Weisha1,2, Zhou Qifeng1,2
Author information +
History +

Abstract

In order to improve the grid-connected active power (GCAP) response speed of Virtual Synchronous Generator (VSG) under weak power grid, an optimization strategy of GCAP dynamic response for VSG based on the virtual negative impedance combined with the active power transient damping control algorithm is proposed in this paper. The optimization strategy firstly uses the virtual negative impedance control link to reduce the VSG equivalent output impedance as well as the GCAP dynamic response time of VSG. Then, the transient damping of VSG and the inhibition ability of GCAP dynamic oscillation are enhanced by the active power transient damping control link. In addition, the Matlab/Simulink simulation software is used to study the GCAP dynamic response performance of VSG in the condition of active power command step, and the experimental test platform of VSG grid-connected system is established. Finally, the simulation and experimental results verify the feasibility and superiority of the proposed strategy in improving the GCAP dynamic response characteristics of VSG under a weak grid.

Key words

virtual synchronous generator / weak power grid / grid-connected active power / dynamic response / virtual negative impedance / transient damping

Cite this article

Download Citations
Shi Rongliang, Lan Caihua, Zhou Lujing, Liu Weisha, Zhou Qifeng. ANALYSIS AND IMPROVEMENT STRATEGY OF VSG ACTIVE POWER RESPONSE CHARACTERISTICS UNDER WEAK GRID[J]. Acta Energiae Solaris Sinica. 2024, 45(8): 182-189 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0593

References

[1] 李卫东, 张力兵, 齐大伟, 等. 考虑零碳排放的电-气综合能源系统日前优化调度[J]. 太阳能学报, 2023, 44(6): 145-151.
LI W D, ZHANG L B, QI D W, et al.Day-ahead optimal dispatch of electric-gas integrated energy systems considering zero-carbon emissions[J]. Acta energiae solaris sinica, 2023, 44(6): 145-151.
[2] 高洪超, 王宣元, 邱小燕, 等. 新型电力系统环境下的虚拟电厂辅助调峰市场机制及其商业模式设计[J]. 太阳能学报, 2023, 44(3): 376-385.
GAO H C, WANG X Y, QIU X Y, et al.Ramping energy market mechanism and its business model of virtual power plants oriented to new power system[J]. Acta energiae solaris sinica, 2023, 44(3): 376-385.
[3] 石荣亮, 张烈平, 王文成, 等. 基于改进型二阶广义积分器-锁频环的储能变换器惯量模拟方法[J]. 太阳能学报, 2021, 42(12): 428-434.
SHI R L, ZHANG L P, WANG W C, et al.A inertia simulation method based on improved second-order generalized integrator-frequency-locked loop[J]. Acta energiae solaris sinica, 2021, 42(12): 428-434.
[4] WANG X F, TAUL M G, WU H, et al.Grid-synchronization stability of converter-based resources—an overview[J]. IEEE open journal of industry applications, 2020, 1: 115-134.
[5] WANG X F, BLAABJERG F.Harmonic stability in power electronic-based power systems: concept, modeling, and analysis[J]. IEEE transactions on smart grid, 2019, 10(3): 2858-2870.
[6] ZHANG H B, XIANG W, LIN W X, et al.Grid forming converters in renewable energy sources dominated power grid: control strategy, stability, application, and challenges[J]. Journal of modern power systems and clean energy, 2021, 9(6): 1239-1256.
[7] LONG B, LIAO Y, CHONG K T, et al.MPC-controlled virtual synchronous generator to enhance frequency and voltage dynamic performance in islanded microgrids[J]. IEEE transactions on smart grid, 2021, 12(2): 953-964.
[8] 谢震, 许可宝, 秦世耀, 等. 基于电压源型和电流源型双馈风电机组稳定性对比分析[J]. 电网技术, 2021, 45(5): 1724-1735.
XIE Z, XU K B, QIN S Y, et al.Comparative analysis of doubly-fed wind turbine stability based on voltage source and current source[J]. Power system technology, 2021, 45(5): 1724-1735.
[9] SUN P, YAO J, ZHAO Y, et al.Stability assessment and damping optimization control of multiple grid-connected virtual synchronous generators[J]. IEEE transactions on energy conversion, 2021, 36(4): 3555-3567.
[10] XU H Z, YU C Z, LIU C, et al.An improved virtual inertia algorithm of virtual synchronous generator[J]. Journal of modern power systems and clean energy, 2020, 8(2): 377-386.
[11] FANG J Y, LIN P F, LI H C, et al.An improved virtual inertia control for three-phase voltage source converters connected to a weak grid[J]. IEEE transactions on power electronics, 2019, 34(9): 8660-8670.
[12] 詹长江, 吴恒, 王雄飞, 等. 构网型变流器稳定性研究综述[J]. 中国电机工程学报, 2023, 43(6): 2339-2359.
ZHAN C J, WU H, WANG X F, et al.An overview of stability studies of grid-forming voltage source converters[J]. Proceedings of the CSEE, 2023, 43(6): 2339-2359.
[13] 马铱林, 杨欢, 屈子森, 等. 改善虚拟同步发电机阻尼特性的设计方法[J]. 电网技术, 2021, 45(1): 269-275.
MA Y L, YANG H, QU Z S, et al.Design method for improving damping characteristics of virtual synchronous generator[J]. Power system technology, 2021, 45(1): 269-275.
[14] 徐海珍, 张兴, 刘芳, 等. 基于微分补偿环节虚拟惯性的虚拟同步发电机控制策略[J]. 电力系统自动化, 2017, 41(3): 96-102.
XU H Z, ZHANG X, LIU F, et al.Control strategy of virtual synchronous generator based on differential compensation virtual inertia[J]. Automation of electric power systems, 2017, 41(3): 96-102.
[15] 李明烜, 王跃, 徐宁一, 等. 基于带通阻尼功率反馈的虚拟同步发电机控制策略[J]. 电工技术学报, 2018, 33(10): 2176-2185.
LI M X, WANG Y, XU N Y, et al.Virtual synchronous generator control strategy based on bandpass damping power feedback[J]. Transactions of China Electrotechnical Society, 2018, 33(10): 2176-2185.
[16] SHUAI Z K, HUANG W, SHEN Z J, et al.Active power oscillation and suppression techniques between two parallel synchronverters during load fluctuations[J]. IEEE transactions on power electronics, 2020, 35(4): 4127-4142.
[17] 石荣亮, 张群英, 王国斌, 等. 提高储能VSG并网有功响应性能的暂态阻尼策略[J]. 电力自动化设备, 2024, 44(1): 134-140.
SHI R L, ZHANG Q Y, WANG G B, et al.Transient damping strategies to improve grid-connected active response performance of energy storage VSG[J]. Electric power automation equipment, 2024, 44(1): 134-140.
[18] 石荣亮, 杨桂华, 王国斌, 等. 基于有功分数阶微分校正的储能VSG并网有功响应策略[J]. 电力自动化设备, 2024, 44(2): 204-210.
SHI R L, YANG G H, WANG G B, et al.Grid-connected active power response strategy of energy storage VSG based on active power fractional differential correction[J]. Electric power automation equipment, 2024, 44(2): 204-210.
[19] 兰征, 龙阳, 曾进辉, 等. 考虑超调的虚拟同步发电机暂态功率振荡抑制策略[J]. 电力系统自动化, 2022, 46(11): 131-141.
LAN Z, LONG Y, ZENG J H, et al.Transient power oscillation suppression strategy of virtual synchronous generator considering overshoot[J]. Automation of electric power systems, 2022, 46(11): 131-141.
[20] 兰征, 龙阳, 曾进辉, 等. 引入暂态电磁功率补偿的VSG控制策略[J]. 电网技术, 2022, 46(4): 1421-1429.
LAN Z, LONG Y, ZENG J H, et al.VSG control strategy with transient electromagnetic power compensation[J]. Power system technology, 2022, 46(4): 1421-1429.
[21] YU Y, CHAUDHARY S K, TINAJERO G D A, et al. A reference-feedforward-based damping method for virtual synchronous generator control[J]. IEEE transactions on power electronics, 2022, 37(7): 7566-7571.
[22] LI M, ZHANG X, GUO Z X, et al.The control strategy for the grid-connected inverter through impedance reshaping in q-axis and its stability analysis under a weak grid[J]. IEEE journal of emerging and selected topics in power electronics, 2021, 9(3): 3229-3242.
[23] 刘钊汛, 秦亮, 杨诗琦, 等. 面向新型电力系统的电力电子变流器虚拟同步控制方法评述[J]. 电网技术, 2023, 47(1): 1-16.
LIU Z X, QIN L, YANG S Q, et al.Review on virtual synchronous generator control technology of power electronic converter in power system based on new energy[J]. Power system technology, 2023, 47(1): 1-16.
[24] 杨正茂. 微电网中虚拟同步发电机暂态特性改善研究[D]. 重庆: 重庆大学, 2021.
YANG Z M.Study on improving transient characteristics of virtual synchronous generator in microgrid[D]. Chongqing: Chongqing University, 2021.
PDF(1720 KB)

Accesses

Citation

Detail

Sections
Recommended

/