PROBABILISTIC NET LOAD FORECASTING BASED ON TCN AND GAUSSIAN PROCESS-ENABLED RESIDUAL MODELING LEARNING APPROACH

Zhao Hongshan, Wu Yuchen, Pan Sichao, Wen Kaiyun

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (12) : 588-595.

PDF(1360 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1360 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (12) : 588-595. DOI: 10.19912/j.0254-0096.tynxb.2023-0632

PROBABILISTIC NET LOAD FORECASTING BASED ON TCN AND GAUSSIAN PROCESS-ENABLED RESIDUAL MODELING LEARNING APPROACH

  • Zhao Hongshan, Wu Yuchen, Pan Sichao, Wen Kaiyun
Author information +
History +

Abstract

Net load forecasting is of great importance for grid operation and management with high penetration of renewable energy. This paper proposes a net load prediction method based on temporal convolutional network (TCN) and Gaussian process (GP), which can provide accurate point prediction and probabilistic prediction results. First, TCN is used to extract the variation pattern of net load from a large amount of historical data, and the excellent time series modeling capability of TCN can discover the complex mapping relationship between the input and output of the net load forecasting task. Then, a composite kernel function is designed for the Gaussian process to correct the prediction residuals of TCN, which can further improve the accuracy of point prediction based on TCN prediction, and also quantify the uncertainty of net load prediction by using the uncertainty quantification ability of Gaussian process. Finally, experiments are conducted on real net load datasets, and the effectiveness of the proposed method is illustrated by comparing it with a large number of state-of-the-art models.

Key words

prediction models / photovoltaic output / probability density function / residual neural networks / temporal convolutional network(TCN)

Cite this article

Download Citations
Zhao Hongshan, Wu Yuchen, Pan Sichao, Wen Kaiyun. PROBABILISTIC NET LOAD FORECASTING BASED ON TCN AND GAUSSIAN PROCESS-ENABLED RESIDUAL MODELING LEARNING APPROACH[J]. Acta Energiae Solaris Sinica. 2024, 45(12): 588-595 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0632

References

[1] 马钊, 张恒旭, 赵浩然, 等. 双碳目标下配用电系统的新使命和新挑战[J]. 中国电机工程学报, 2022, 42(19): 6931-6945.
MA Z, ZHANG H X, ZHAO H R, et al.New mission and challenge of power distribution and consumption system under dual-carbon target[J]. Proceedings of the CSEE, 2022, 42(19): 6931-6945.
[2] ALIPOUR M, AGHAEI J, NOROUZI M, et al.A novel electrical net-load forecasting model based on deep neural networks and wavelet transform integration[J]. Energy, 2020, 205: 118106.
[3] 赵登福, 庞文晨, 张讲社, 等. 基于贝叶斯理论和在线学习支持向量机的短期负荷预测[J]. 中国电机工程学报, 2005, 25(13): 8-13.
ZHAO D F, PANG W C, ZHANG J S, et al.Based on Bayesian theory and online learning svm for short term load forecasting[J]. Proceedings of the CSEE, 2005, 25(13): 8-13.
[4] LEE J Y, CHO Y.National-scale electricity peak load forecasting: traditional, machine learning, or hybrid model?[J]. Energy, 2022, 239: 122366.
[5] 肖白, 高文瑞, 李道明, 等. 基于3σ-CEEMDAN-LSTM的空间负荷预测方法[J]. 电力自动化设备, 2023, 43(3): 159-165.
XIAO B, GAO W R, LI D M, et al.Spatial load forecasting method based on 3σ-CEEMDAN-LSTM[J]. Electric power automation equipment, 2023, 43(3): 159-165.
[6] 欧阳静, 杨吕, 尹康, 等. 基于ALIF-LSTM多任务学习的综合能源系统短期负荷预测[J]. 太阳能学报, 2022, 43(9): 499-507.
OUYANG J, YANG L, YIN K, et al.Short-term load forecasting method for integrated energy system based on ALIF-LSTM and multi-task learning[J]. Acta energiae solaris sinica, 2022, 43(9): 499-507.
[7] 邹智, 吴铁洲, 张晓星, 等. 基于贝叶斯优化CNN-BiGRU混合神经网络的短期负荷预测[J]. 高电压技术, 2022, 48(10): 3935-3945.
ZOU Z, WU T Z, ZHANG X X, et al.Short-term load forecast based on Bayesian optimized CNN-BiGRU hybrid neural networks[J]. High voltage engineering, 2022, 48(10): 3935-3945.
[8] 陆继翔, 张琪培, 杨志宏, 等. 基于CNN-LSTM混合神经网络模型的短期负荷预测方法[J]. 电力系统自动化, 2019, 43(8): 131-137.
LU J X, ZHANG Q P, YANG Z H, et al.Short-term load forecasting method based on CNN-LSTM hybrid neural network model[J]. Automation of electric power systems, 2019, 43(8): 131-137.
[9] BRACALE A, CARAMIA P, DE FALCO P, et al.Multivariate quantile regression for short-term probabilistic load forecasting[J]. IEEE transactions on power systems, 2020, 35(1): 628-638.
[10] MUNKHAMMAR J, VAN DER MEER D, WIDÉN J. Very short term load forecasting of residential electricity consumption using the Markov-chain mixture distribution (MCM) model[J]. Applied energy, 2021, 282: 116180.
[11] WEN H L, MA J H, GU J, et al.Sparse variational Gaussian process based day-ahead probabilistic wind power forecasting[J]. IEEE transactions on sustainable energy, 2022, 13(2): 957-970.
[12] 王炜, 冯斌, 黄刚, 等. 基于自注意力编码器和深度神经网络的短期净负荷预测[J]. 中国电机工程学报, 2023, 43(23): 9072-9084.
WANG W, FENG B, HUANG G, et al.Short-term net load forecasting based on self-attention encoder and deep neural network[J]. Proceedings of the CSEE, 2023, 43(23): 9072-9084.
[13] SUN M Y, ZHANG T Q, WANG Y, et al.Using Bayesian deep learning to capture uncertainty for residential net load forecasting[J]. IEEE transactions on power systems, 2020, 35(1): 188-201.
[14] 刘友波, 吴浩, 刘挺坚, 等. 集成经验模态分解与深度学习的用户侧净负荷预测算法[J]. 电力系统自动化, 2021, 45(24): 57-64.
LIU Y B, WU H, LIU T J, et al.User-side net load forecasting method integrating empirical mode decomposition and deep learning[J]. Automation of electric power systems, 2021, 45(24): 57-64.
[15] 王晓东, 张一龙, 刘颖明, 等. 基于双时间尺度净负荷预测的储能调峰控制策略[J]. 太阳能学报, 2021, 42(7): 58-64.
WANG X D, ZHANG Y L, LIU Y M, et al.Double time scale power prediction based peaking shaving control strategy of energy storage system[J]. Acta energiae solaris sinica, 2021, 42(7): 58-64.
[16] TAGASOVSKA N, LOPEZ-PAZ D. Single-model uncertainties for deep learning[EB/OL].2018: DOI:10.48550/arXiv.1811.00908.
[17] 余建明, 庞传军. 考虑数据和模型不确定性的短期风电功率概率预测[J]. 电网技术, 2022, 46(5): 1926-1933.
YU J M, PANG C J.Short-term wind power probabilistic prediction considering data and model uncertainties[J]. Power system technology, 2022, 46(5): 1926-1933.
[18] 赵长飞. 新能源电力系统概率预测-决策一体化研究[D]. 杭州: 浙江大学, 2022.
ZHAO C F.Integrated probabilistic forecasting and decision for power system with renewables[D]. Hangzhou: Zhejiang University, 2022.
[19] 王萍, 范凌峰, 程泽. 基于健康特征参数的锂离子电池SOH和RUL联合估计方法[J]. 中国电机工程学报, 2022, 42(4): 1523-1534.
WANG P, FAN L F, CHENG Z.A joint state of health and remaining useful life estimation approach for lithium-ion batteries based on health factor parameter[J]. Proceedings of the CSEE, 2022, 42(4): 1523-1534.
[20] RASMUSSEN C E, WILLIAMS C K I. Gaussian processes for machine learning[M]. Cambridge, MA: MIT Press, 2006.
PDF(1360 KB)

Accesses

Citation

Detail

Sections
Recommended

/