AEROELASTIC RESPONSE ANALYSIS OF LARGE FLEXIBLE WIND TURBINE BLADES

Gao Long, Lin Lihui, Yang Wansheng, Gao Erjie, Zhu Lei

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (8) : 572-580.

PDF(2391 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2391 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (8) : 572-580. DOI: 10.19912/j.0254-0096.tynxb.2023-0658

AEROELASTIC RESPONSE ANALYSIS OF LARGE FLEXIBLE WIND TURBINE BLADES

  • Gao Long1, Lin Lihui1, Yang Wansheng2, Gao Erjie3, Zhu Lei1
Author information +
History +

Abstract

The aeroelastic effect of flexible blades is becoming increasingly significant with the rapid development of wind turbines and the sharp increase in blade length. Based on blade element momentum(BEM) theory and multi-body dynamics theory, the aerodynamic structure coupling equation of 95 m blade is established, and the aerodynamic response of blades under extreme wind load is analyzed which include a detailed study of the vibration characteristics of the blades after flutter and the damping characteristics of the blades under different speed conditions. According to the research, negative damping oscillation is a key factor causing blade flutter instability. At the same time, the influence of density of air, pitch angle and other factors on the aeroelastic stability of large blades are analyzed by parallel comparison method.

Key words

wind turbine blades / aeroelasticity / damping / stability analysis / BEM

Cite this article

Download Citations
Gao Long, Lin Lihui, Yang Wansheng, Gao Erjie, Zhu Lei. AEROELASTIC RESPONSE ANALYSIS OF LARGE FLEXIBLE WIND TURBINE BLADES[J]. Acta Energiae Solaris Sinica. 2024, 45(8): 572-580 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0658

References

[1] 许立国, 任建宇. 海上风力发电的现状及展望[J]. 港工技术, 2022, 59(6): 45-48.
XU L G, REN J Y.Present situation and prospects of offshore wind power[J]. Port engineering technology, 2022, 59(6): 45-48.
[2] 李志川, 胡鹏, 马佳星, 等. 中国海上风电发展现状分析及展望[J]. 中国海上油气, 2022, 34(5): 229-236.
LI Z C, HU P, MA J X, et al.Analysis and prospect of offshore wind power development in China[J]. China offshore oil and gas, 2022, 34(5): 229-236.
[3] 李会康, 束志鹏, 刘升贵. 大型风力发电机叶片强度分析及发展趋势研究[J]. 电子技术与软件工程, 2023(1): 100-103.
LI H K, SHU Z P, LIU S G.Strength analysis and development trend research of large wind turbine blades[J]. Electronic technology & software engineering, 2023(1): 100-103.
[4] 王明军. 风电机组叶片设计与气动弹性问题[C]//第六届中国风电后市场交流合作大会论文集. 天津, 2019: 32-38.
WANG M J.The design and aeroelasticity problem of wind turbine blade[C]//Proceedings of the 6th China Wind Power Aftermarket Exchange and Cooperation Conference.Tianjin, 2019: 32-38.
[5] 孙丽萍, 王昊, 丁娇娇. 风力发电机叶片的气动弹性及颤振研究综述[J]. 液压与气动, 2012(10): 1-5.
SUN L P, WANG H, DING J J.A summary on the aeroelasticity and flutter of wind turbine blade[J]. Chinese hydraulics & pneumatics, 2012(10): 1-5.
[6] YU D O, KWON O J.Predicting wind turbine blade loads and aeroelastic response using a coupled CFD-CSD method[J]. Renewable energy, 2014, 70: 184-196.
[7] CHEN C, ZHOU J W, LI F M, et al.Stall-induced vibrations analysis and mitigation of a wind turbine rotor at idling state: theory and experiment[J]. Renewable energy, 2022, 187: 710-727.
[8] 黄俊东. 基于特征值分析的后掠叶片的气弹阻尼分析方法研究[D]. 广州: 广东工业大学, 2020.
HUANG J D.Research of aeroelastic damping of swept-blade based on eigenvalue method[D]. Guangzhou: Guangdong University of Technology, 2020.
[9] 柯世堂, 陆曼曼, 吴鸿鑫, 等. 基于风洞试验15 MW风电叶片颤振后形态与能量图谱研究[J]. 空气动力学学报, 2022, 40(4): 169-180.
KE S T, LU M M, WU H X, et al.Experimental study on the post-flutter morphological chracteristics and energy dissipation of a 15 MW wind turbine blade[J]. Acta aerodynamica sinica, 2022, 40(4): 169-180.
[10] 白学宗, 安宗文, 侯运丰, 等. 低速冲击载荷下的风电叶片刚度退化规律[J]. 太阳能学报, 2022, 43(1): 132-139.
BAI X Z, AN Z W, HOU Y F, et al.Stiffness degradation rule of wind turbine blade under low-velocity impact load[J]. Acta energiae solaris sinica, 2022, 43(1): 132-139.
[11] 杨景云, 王文韫, 戴巨川. 基于摄动模态分析的风电叶片动力学特性研究[J]. 太阳能学报, 2023, 44(11): 231-238.
YANG J Y, WANG W Y, DAI J C.Research on dynamic characteristics of wind power blades based on perturbation mode analysis[J]. Acta energiae solaris sinica, 2023, 44(11): 231-238.
[12] BETZ A.Das maximum der theoretisch mglichen Ausnützung des windes durch windmotoren[J]. Zeitschrift für das gesamte turbinewesen, 1920, 26: 307-309.
[13] GLAUERT H.Airplane propellers[M]. Aerodynamic Theory. Heidelberg: Springer, 1935: 169-360.
[14] PRANDTL L.The essentials of fluid dynamics[M]. New York: Hafner Publishing Company, 1963.
[15] PITT D M, PETERS D A.Theoretical prediction of dynamic inflow derivatives[J]. Vertica, 1981, 5(1): 21-34.
[16] LEISHMAN J G, BEDDOES T S.A semi-empirical model for dynamic stall[J]. Journal of the American Helicopter Society, 1989, 34(3): 3-17.
[17] SHABANA A A.Dynamics of multibody systems, second edition[M]. Cambridge: Cambridge University Press, 1998.
PDF(2391 KB)

Accesses

Citation

Detail

Sections
Recommended

/