RESEARCH ON WIND LOAD VALUE OF PHOTOVOLTAIC BRACKET BASED ON WIND TUNNEL TEST AND STANDARD VALUES

Chen Quan, Niu Huawei, Li Hongxing, Jiang Dong

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (9) : 259-267.

PDF(1827 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1827 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (9) : 259-267. DOI: 10.19912/j.0254-0096.tynxb.2023-0664

RESEARCH ON WIND LOAD VALUE OF PHOTOVOLTAIC BRACKET BASED ON WIND TUNNEL TEST AND STANDARD VALUES

  • Chen Quan1, Niu Huawei1, Li Hongxing2, Jiang Dong2
Author information +
History +

Abstract

In order to improve the wind load research of photovoltaic bracket. First, the calculation principle of wind load of photovoltaic bracket of various standards and the value characteristics of related parameters were compared and analyzed. Second, the shape coefficients of the solar structure under the combination of typical inclination angles and wind directions were derived by performing a rigid model load measurement wind tunnel test on a fixed adjustable photovoltaic. Transient analysis was used to determine the photovoltaic bracket wind vibration coefficients under normal operating settings from the results of the wind tunnel tests. Finally, the wind load values and related parameters obtained by the test were compared with the reference values of each standards. The findings demonstrate that there are clear discrepancies between various standards and wind tunnel tests' wind pressure coefficients, wind vibration coefficients, and wind loads. The wind pressure coefficient of the wind tunnel test is substantially lower than the stated value of each standards, and the wind vibration coefficient result is higher than the domestic standard value of 1.0, more than 1.64-2.05 times, and there is also a considerable difference with foreign standards. In general, when a structure is upwind as opposed to leeward, the wind load and wind pressure coefficient are lower. The wind resistance design of photovoltaic bracket according to Chinese standards is radical, while the outcomes are conservative by foreign standards. More wind resistance studies are required in order to safely and rationally guide the wind resistance design of photovoltaic bracket structures because the wind load provisions in common standards are not reasonable.

Key words

photovoltaic bracket / wind load / wind tunnel test / standard / finite element

Cite this article

Download Citations
Chen Quan, Niu Huawei, Li Hongxing, Jiang Dong. RESEARCH ON WIND LOAD VALUE OF PHOTOVOLTAIC BRACKET BASED ON WIND TUNNEL TEST AND STANDARD VALUES[J]. Acta Energiae Solaris Sinica. 2024, 45(9): 259-267 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0664

References

[1] YEMENICI O, AKSOY M O.An experimental and numerical study of wind effects on a ground-mounted solar panel at different panel tilt angles and wind directions[J]. Journal of wind engineering and industrial aerodynamics, 2021, 213: 104630.
[2] JUBAYER C M, HANGAN H.Numerical simulation of wind effects on a stand-alone ground mounted photovoltaic (PV) system[J]. Journal of wind engineering and industrial aerodynamics, 2014, 134: 56-64.
[3] ABIOLA-OGEDENGBE A, HANGAN H, SIDDIQUI K.Experimental investigation of wind effects on a standalone photovoltaic(PV) module[J]. Renewable energy, 2015, 78: 657-665.
[4] 李晓娜. 太阳能光伏支架风荷载体型系数研究[D]. 石家庄: 石家庄铁道大学, 2015.
LI X N.Study on Wind Load of Solar Photovoltaic Bracket[D]. Shijiazhuang: Shijiazhuang Tiedao University, 2015.
[5] WARSIDO W P, BITSUAMLAK G T, BARATA J, et al.Influence of spacing parameters on the wind loading of solar array[J]. Journal of fluids and structures, 2014, 48: 295-315.
[6] 张文龙. 不同安装位置光伏阵列的风载荷研究[D]. 淮南: 安徽理工大学, 2021.
ZHANG W L.Research on wind load of photovoltaic array at different installation positions[D]. Huainan: Anhui University of Science & Technology, 2021.
[7] 楼文娟, 单弘扬, 杨臻, 等. 超大型阵列光伏板体型系数遮挡效应研究[J]. 建筑结构学报, 2021, 42(5): 47-54.
LOU W J, SHAN H Y, YANG Z, et al.Study of shielding effect on shape coefficient of super-large photovoltaic arrays[J]. Journal of building structures, 2021, 42(5): 47-54.
[8] 马文勇, 柴晓兵, 马成成. 柔性支撑光伏组件风荷载影响因素试验研究[J]. 太阳能学报, 2021, 42(11): 10-18.
MA W Y, CHAI X B, MA C C.Experimental study on wind load influencing factors of flexible support photovoltaic modules[J]. Acta energiae solaris sinica, 2021, 42(11): 10-18.
[9] 许宁, 李旭辉, 高晨崇, 等. 光伏系统风荷载体型系数分析[J]. 太阳能学报, 2021, 42(10): 17-22.
XU N, LI X H, GAO C C, et al.Analysis of shape coefficients of wind loads of photovoltaic system[J]. Acta energiae solaris sinica, 2021, 42(10): 17-22.
[10] 宋肖锋, 陈作钢, 肖福勤, 等. 漂浮式光伏电站方阵风载荷数值研究[J]. 太阳能学报, 2020, 41(10): 136-143.
SONG X F, CHEN Z G, XIAO F Q, et al.Numerical research on wind load of floating solar power plants[J]. Acta energiae solaris sinica, 2020, 41(10): 136-143.
[11] 马文勇, 孙高健, 刘小兵, 等. 太阳能光伏板风荷载分布模型试验研究[J]. 振动与冲击, 2017, 36(7): 8-13.
MA W Y, SUN G J, LIU X B, et al.Tests for wind load distribution model of solar panels[J]. Journal of vibration and shock, 2017, 36(7): 8-13.
[12] 贺广零, 蒋华庆, 单建东, 等. 光伏方阵风荷载模型研究[J]. 电力建设, 2012, 33(10): 5-8.
HE G L, JIANG H Q, SHAN J D, et al.Research of wind load model in photovoltaic array[J]. Electric power construction, 2012, 33(10): 5-8.
[13] 张庆祝, 刘志璋, 齐晓慧, 等. 太阳能光伏板风载的载荷分析[J]. 能源技术, 2010, 31(2): 93-95.
ZHANG Q Z, LIU Z Z, QI X H, et al.Solar photovoltaic panels wind load testing and analysis[J]. Energy technology, 2010, 31(2): 93-95.
[14] 邹云峰, 李青婷, 殷梅子, 等. 跟踪式光伏结构风荷载规范规定值与风洞试验值对比[J]. 中南大学学报(自然科学版), 2022, 53(4): 1331-1340.
ZOU Y F, LI Q T, YIN M Z, et al.Comparison of wind load standard values of tracking photovoltaic(PV) structure with wind tunnel test values[J]. Journal of Central South University (science and technology), 2022, 53(4): 1331-1340.
[15] NB/T 10115—2018, 光伏支架结构设计规程[S].
[16] GB 50797—2012, 光伏发电站设计规范[S].
GB 50797—2012,Code for design of photovoltaic power station[S].
[17] GB 50009—2012, 建筑结构荷载规范[S].
GB 50009—2012, Load code for the design of building structures[S].
[18] JIS C8955: 2011, Design guide on structures for photovoltaic array[S].
[19] BS EN1991-1-4, Eurocode 1: Actions on structures-general actions-part 1-4: Wind actions[S].
[20] ASCE/SEI 7-2016, Minimum design loads and associated criteria for buildings and other structures[S].
PDF(1827 KB)

Accesses

Citation

Detail

Sections
Recommended

/