TWO STAGE STOCHASTIC OPTIMIZATION OF GREEN METHANOL SYNTHESIS SYSTEM BASED ON COPULA SHUFFLE METHOD FOR SOLAR HYDROGEN PRODUCTION

Zhou Jiahui, Zhang Runzhi, Xu Gang, Xue Xiaojun, Chen Heng

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (9) : 70-79.

PDF(1496 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1496 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (9) : 70-79. DOI: 10.19912/j.0254-0096.tynxb.2023-0668

TWO STAGE STOCHASTIC OPTIMIZATION OF GREEN METHANOL SYNTHESIS SYSTEM BASED ON COPULA SHUFFLE METHOD FOR SOLAR HYDROGEN PRODUCTION

  • Zhou Jiahui, Zhang Runzhi, Xu Gang, Xue Xiaojun, Chen Heng
Author information +
History +

Abstract

To achieve the dual carbon goal and promote the multi-domain application of hydrogen energy, this paper designs a scenery complementary hydrogen production and synthesis green methanol system, and proposes a Copula-Shuffle scenery output uncertainty and correlation scheduling scenario generation method for electrochemical (power-to-X, P2X) systems. Based on the operating characteristics of each equipment in the new system, a two-stage stochastic optimization model is established and simulated with the maximum net benefit as the fitness function. The results show that after the design and scheduling optimization, the new system makes use of the electrolyzer start-stop standby scheduling and the flexible regulation of hydrogen storage to actively suppress the unstable output of scenery and meet the flexible variable load regulation and continuous production constraints of the green methanol synthesis equipment, and realize the deep synergistic operation of each equipment. The new system can fully consume new energy power and has initial profitability. The research results can provide some guidance for the green methanol industry.

Key words

wind-solar complementary / hydrogen production / methanol / optimal dispatching / stochastic

Cite this article

Download Citations
Zhou Jiahui, Zhang Runzhi, Xu Gang, Xue Xiaojun, Chen Heng. TWO STAGE STOCHASTIC OPTIMIZATION OF GREEN METHANOL SYNTHESIS SYSTEM BASED ON COPULA SHUFFLE METHOD FOR SOLAR HYDROGEN PRODUCTION[J]. Acta Energiae Solaris Sinica. 2024, 45(9): 70-79 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0668

References

[1] 张晓飞, 蒋利军, 叶建华, 等. 固态储氢技术的研究进展[J]. 太阳能学报, 2022, 43(6): 345-354.
ZHANG X F, JIANG L J, YE J H, et al.Research progress of solid-state hydrogen storage technology[J]. Acta energiae solaris sinica, 2022, 43(6): 345-354.
[2] BELLOTTI D, RIVAROLO M, MAGISTRI L.A comparative techno-economic and sensitivity analysis of Power-to-X processes from different energy sources[J]. Energy conversion and management, 2022, 260: 115565.
[3] 鲁誉, 刘牧天, 肖英杰, 等. 新型甲醇重整-化学链氢电联产系统热力学分析[J]. 工程热物理学报, 2021, 42(10): 2481-2490.
LU Y, LIU M T, XIAO Y J, et al.Thermodynamic analysis of a new methanol reforming-chemical looping cogeneration system of hydrogen and power[J]. Journal of engineering thermophysics, 2021, 42(10): 2481-2490.
[4] 徐钢, 薛小军, 张钟, 等. 一种基于电解水制氢及甲醇合成的碳中和能源技术路线[J]. 中国电机工程学报, 2023, 43(1): 191-201.
XU G, XUE X J, ZHANG Z, et al.A new carbon neutral energy technology route based on electrolytic water to hydrogen and methanol synthesis[J]. Proceedings of the CSEE, 2023, 43(1): 191-201.
[5] STEFANO S, ANDREA P, VITTORIO T, et al.Renewable methanol production from green hydrogen and captured CO2: a techno-economic assessment[J]. Journal of CO2 utilization, 2023, 68.
[6] 大连化学物理研究所. 绿色氢能和液态阳光甲醇高端论坛召开[EB/OL].https://www.cas.cn/yx/202010/t20201019_4763506.shtml.
Dalian Institute of Chemical Physics. Green hydrogen energy and liquid sunshine methanol high end forum convened[EB/OL].https://www.cas.cn/yx/202010/t20201019_4763506.shtml.
[7] 广州市人民政府. 将太阳能变成液体!“液态阳光”研究院及产业化基地落地南沙[EB/OL].https://www.gz.gov.cn/xw/zwlb/gqdt/nsq/content/post_8903394.html.
Guangzhou Municipal People's Government. Turn solar energy into liquid! "Liquid Sunshine" Research Institute and Industrialization Base Landing in Nansha[EB/OL]. https://www.gz.gov.cn/xw/zwlb/gqdt/nsq/content/post_8903394.html.
[8] 王集杰, 韩哲, 陈思宇, 等. 太阳燃料甲醇合成[J]. 化工进展, 2022, 41(3): 1309-1317.
WANG J J, HAN Z, CHEN S Y, et al.Liquid sunshine methanol[J]. Chemical industry and engineering progress, 2022, 41(3): 1309-1317.
[9] 周雷雷, 程海洋, 赵凤玉. Pd基多相催化剂上CO2加氢反应的研究进展[J]. 高等学校化学学报, 2022, 43(7): 59-73.
ZHOU L L, CHENG H Y, ZHAO F Y.Research progress of CO2 hydrogenation over Pd-based heterogeneous catalysts[J]. Chemical journal of Chinese universities, 2022, 43(7): 59-73.
[10] BATTAGLIA P, BUFFO G, FERRERO D, et al.Methanol synthesis through CO2 capture and hydrogenation: thermal integration, energy performance and techno-economic assessment[J]. Journal of CO2 utilization, 2021, 44: 101407.
[11] 程欢, 任洲洋, 孙志媛, 等. 电能-甲醇跨区协同输运下的电-氢耦合系统调度方法[J]. 电工技术学报, 2024, 39(3): 731-744.
CHENG H, REN Z Y, SUN Z Y, et al.A dispatching method for the electricity-hydrogen coupling systems considering the coordinated inter-region transportation of electricity and methanol[J]. Transactions of China Electrotechnical Society, 2024, 39(3): 731-744.
[12] 吉旭, 周步祥, 贺革, 等. 大规模可再生能源电解水制氢合成氨关键技术与应用研究进展[J]. 工程科学与技术, 2022, 54(5): 1-11.
JI X, ZHOU B X, HE G, et al.Research review of the key technology and application of large-scale water electrolysis powered by renewable energy to hydrogen and ammonia production[J]. Advanced engineering sciences, 2022, 54(5): 1-11.
[13] 袁爽, 何银国, 戴朝华, 等. 风电时间相关性多面体不确定性建模与鲁棒机组组合优化[J]. 太阳能学报, 2020, 41(9): 293-301.
YUAN S, HE Y G, DAI C H, et al.Polyhedral uncertainty modeling and robust optimization in unit commitment considering wind temporal correlation[J]. Acta energiae solaris sinica, 2020, 41(9): 293-301.
[14] 韩志永, 张宇华, 李兵. 基于多场景技术的冷热电虚拟电厂两阶段优化调度[J]. 电测与仪表, 2022, 59(3): 174-180.
HAN Z Y, ZHANG Y H, LI B.Two-stage optimal dispatching of CCHP virtual power plant based on multi-scenario technology[J]. Electrical measurement & instrumentation, 2022, 59(3): 174-180.
[15] 童宇轩, 胡俊杰, 刘雪涛, 等. 新能源电力系统供需灵活性量化及分布鲁棒优化调度[J]. 电力系统自动化, 2023, 47(15): 80-90.
TONG Y X, HU J J, LIU X T, et al.Quantification of supply and demand flexibility and distributionally robust optimal dispatch of renewable energy-dominated power systems[J]. Automation of electric power systems, 2023, 47(15): 80-90.
[16] 刘菲, 林超凡, 陈晨, 等. 考虑分布式新能源动态不确定性的配电网灾后时序负荷恢复方法[J]. 电力自动化设备, 2022, 42(7): 159-167.
LIU F, LIN C F, CHEN C, et al.Post-disaster time-series load restoration method for distribution network considering dynamic uncertainty of distributed renewable energy[J]. Electric power automation equipment, 2022, 42(7): 159-167.
[17] 林顺富, 刘持涛, 李东东, 等. 考虑电能交互的冷热电区域多微网系统双层多场景协同优化配置[J]. 中国电机工程学报, 2020, 40(5): 1409-1421.
LIN S F, LIU C T, LI D D, et al.Bi-level multiple scenarios collaborative optimization configuration of CCHP regional multi-microgrid system considering power interaction among microgrids[J]. Proceedings of the CSEE, 2020, 40(5): 1409-1421.
[18] 卢锦玲, 於慧敏. 基于混合Copula的风光功率相关结构分析[J]. 太阳能学报, 2017, 38(11): 3188-3194.
LU J L, YU H M.Dependence structure analysis of wind and pv power based on hybrid copula[J]. Acta energiae solaris sinica, 2017, 38(11): 3188-3194.
[19] 左逢源, 张玉琼, 赵强, 等. 计及源荷不确定性的综合能源生产单元运行调度与容量配置两阶段随机优化[J]. 中国电机工程学报, 2022, 42(22): 8205-8214, 14.
ZUO F Y, ZHANG Y Q, ZHAO Q, et al.Two-stage stochastic optimization for operation scheduling and capacity allocation of integrated energy production unit considering supply and demand uncertainty[J]. Proceedings of the CSEE, 2022, 42(22): 8205-8214, 14.
[20] 袁铁江, 万志, 王进君, 等. 考虑电解槽启停特性的制氢系统日前出力计划[J]. 中国电力, 2022, 55(1): 101-109.
YUAN T J, WAN Z, WANG J J, et al.The day-ahead output plan of hydrogen production system considering the start-stop characteristics of electrolytic cell[J]. Electric power, 2022, 55(1): 101-109.
[21] PÉREZ-FORTES M, SCHÖNEBERGER J C, BOULAMANTI A, et al. Methanol synthesis using captured CO2 as raw material: techno-economic and environmental assessment[J]. Applied energy, 2016, 161: 718-732.
[22] 钱宇, 陈耀熙, 史晓斐, 等. 太阳能波动特性大数据分析与风光互补耦合制氢系统集成[J]. 化工学报, 2022, 73(5): 2101-2110, 2290.
QIAN Y, CHEN Y X, SHI X F, et al.Big data analysis of solar energy fluctuation characteristics and integration of wind-photovoltaic to hydrogen system[J]. CIESC journal, 2022, 73(5): 2101-2110, 2290.
PDF(1496 KB)

Accesses

Citation

Detail

Sections
Recommended

/