STUDY ON ENERGY DISSIPATION IN 42 PAIRS OF ROD REDUCTION FURNACE

Xu Qian, Peng Zhong, Li Shouqin, Xie Gang, Hou Yanqing, Ma Wenhui

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (9) : 268-275.

PDF(2460 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2460 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (9) : 268-275. DOI: 10.19912/j.0254-0096.tynxb.2023-0672

STUDY ON ENERGY DISSIPATION IN 42 PAIRS OF ROD REDUCTION FURNACE

  • Xu Qian1, Peng Zhong2,3, Li Shouqin2,3, Xie Gang4, Hou Yanqing1, Ma Wenhui1
Author information +
History +

Abstract

On account of the complexity of investigating the impact of annular silicon rod arrangement on energy consumption in Siemens polycrystalline silicon furnaces, this study establishes physical models of two annular silicon rod distribution modes in 42 pairs of furnaces: three-ring arrangements and four-ring arrangements and conducts simulation calculations. Analysis of furnace behavior and silicon rod behavior reveals that energy consumption increases with the diameter of the silicon rod, and that the flow field and temperature field influence this change in the furnace. Furthermore, the radiation energy loss with the inner ring silicon rod in the reduction furnace increases first and then decreases with the increase of the diameter of the silicon rod, while the radiation loss of the outer ring silicon rod increases with the increase of the diameter of the silicon rod. According to the arrangement method of silicon rods in 42 pairs of Siemens reduction furnace, the three-ring arrangement of silicon rods is proposed to reduce the energy consumption of the furnace and achieve the purpose of energy saving.

Key words

PV power / numerical simulation / polysilicon / radiation / siemens reactor / energy conservation and consumption reduction

Cite this article

Download Citations
Xu Qian, Peng Zhong, Li Shouqin, Xie Gang, Hou Yanqing, Ma Wenhui. STUDY ON ENERGY DISSIPATION IN 42 PAIRS OF ROD REDUCTION FURNACE[J]. Acta Energiae Solaris Sinica. 2024, 45(9): 268-275 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0672

References

[1] 张攀, 王伟文, 范军领, 等. 三维还原炉内多晶硅化学气相沉积的数值模拟[J]. 太阳能学报, 2012, 33(3): 511-516.
ZHANG P, WANG W W, FAN J L, et al.Numerical simulation of the chemical vapor deposition of polycrystalline silicon in a 3D furnace[J]. Acta energiae solaris sinica, 2012, 33(3): 511-516.
[2] LEWIS N S.Toward cost-effective solar energy use[J]. Science, 2007, 315(5813): 798-801.
[3] JUNG H, PARK J H, KANG S O, et al. Computational fluid dynamics modeling of mono-silane siemens reactor[J]. Japanese journal of applied physics, 2012, 51(10S): 10NA10.
[4] 徐远志, 刘阳赞, 侯彦清, 等. 12对棒多晶硅还原炉传热的数值模拟研究[J]. 云南冶金, 2018, 47(1): 57-62.
XU Y Z, LIU Y Z, HOU Y Q, et al.Numerical simulation study on heat transfer in 12 rod polysilicon CVD reactor[J]. Yunnan metallurgy, 2018, 47(1): 57-62.
[5] HESSE K, SCHINDLBECK E, DORNBERGER E, et al.Status and development of solar-grade silicon feedstock[C]//European Photovoltaic Solar Energy Conference, Hamburg, Germany, 2009.
[6] WANG C J, WANG T F, LI P L, et al.Recycling of SiCl4 in the manufacture of granular polysilicon in a fluidized bed reactor[J]. Chemical engineering journal, 2013, 220: 81-88.
[7] 梁世民, 张胜涛, 何银凤, 等. 基于数值模拟电子级多晶硅还原炉流动结构改进研究[J]. 人工晶体学报, 2019, 48(3): 545-549.
LIANG S M, ZHANG S T, HE Y F, et al.Flow structure improvement of electronic grade polysilicon reactor based on numerical simulation[J]. Journal of synthetic crystals, 2019, 48(3): 545-549.
[8] 陈其国, 钟真武, 高建, 等. 多晶硅制备中节能降耗技术的研究[J]. 氯碱工业, 2012, 48(9): 28-30.
CHEN Q G, ZHONG Z W, GAO J, et al.Study on energy-saving and consumption-reducing technologies in polycrystalline silicon preparation[J]. Chlor-alkali industry, 2012, 48(9): 28-30.
[9] COSO G D.Chemical decomposition of silanes for the production of solar grade silicon[D]. Spain: Universidad Politecnica de Madrid, 2010.
[10] 方文宝, 周扬民, 聂陟枫, 等. 多晶硅还原炉中硅棒的直流电加热模型[J]. 太阳能学报, 2018, 39(8): 2287-2292.
FANG W B, ZHOU Y M, NIE Z F, et al.Direct-current electric heating model of silicon rod in polysilicon reduction furnace[J]. Acta energiae solaris sinica, 2018, 39(8): 2287-2292.
[11] 聂陟枫, 戴恩睿, 谢刚, 等. 多晶硅还原炉高频交流电加热机制研究[J]. 太阳能学报, 2021, 42(2): 451-458.
NIE Z F, DAI E R, XIE G, et al.Investigation on heating mechanism of high frequency alternating current in polysilicon reduction furnace[J]. Acta energiae solaris sinica, 2021, 42(2): 451-458.
[12] 马越. 多晶硅还原炉内温度场模拟[D]. 徐州: 中国矿业大学, 2019.
MA Y.Simulation of temperature field in polysilicon reduction furnace[D]. Xuzhou: China University of Mining and Technology, 2019.
[13] 吴建宏. 基于CFD模拟优化多晶硅还原炉内的流场及温度场[J]. 清洗世界, 2021, 37(10): 43-44.
WU J H.Optimization of flow field and temperature field in polysilicon reduction furnace based on CFD simulation[J]. Cleaning world, 2021, 37(10): 43-44.
PDF(2460 KB)

Accesses

Citation

Detail

Sections
Recommended

/