CURRENT STATUS AND DEVELOPMENT TRENDS OF GRID TYPE CONVERTERS

Liu Xu, Zhang Guoju, Pei Wei, Zhu Enze, Zhang Xue, Zhao Junyu

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (9) : 101-111.

PDF(1167 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1167 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (9) : 101-111. DOI: 10.19912/j.0254-0096.tynxb.2023-0684

CURRENT STATUS AND DEVELOPMENT TRENDS OF GRID TYPE CONVERTERS

  • Liu Xu, Zhang Guoju, Pei Wei, Zhu Enze1, Zhang Xue1, Zhao Junyu4
Author information +
History +

Abstract

With the development of new energy and power electronics, new power systems exhibit typical "dual high" characteristics, but at the same time, they also bring problems such as low inertia and weak stability. Grid forming control technology (GFM) can enable the inverter to independently establish frequency and control voltage, improve dependence on external voltage sources, and improve system stability. The current situation and development trend of grid type converters are summarized. Firstly, a comparative analysis was conducted between grid following control technology (GFL) and grid building control technology, and it was pointed out that grid building control technology is an effective way to solve the stability of new power systems. Then, the existing grid control technology was introduced, and the application of grid control technology in various fields were analyzed. Finally, the challenges faced when applying grid control technology to converters were pointed out.

Key words

renewable energy resources / power electronics / control systems / converter / grid-forming

Cite this article

Download Citations
Liu Xu, Zhang Guoju, Pei Wei, Zhu Enze, Zhang Xue, Zhao Junyu. CURRENT STATUS AND DEVELOPMENT TRENDS OF GRID TYPE CONVERTERS[J]. Acta Energiae Solaris Sinica. 2024, 45(9): 101-111 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0684

References

[1] 刘畅, 卓建坤, 赵东明, 等. 利用储能系统实现可再生能源微电网灵活安全运行的研究综述[J]. 中国电机工程学报, 2020, 40(1): 1-18.
LIU C, ZHUO J K, ZHAO D M, et al.A review on the utilization of energy storage system for the flexible and safe operation of renewable energy microgrids[J]. Proceedings of the CSEE, 2020, 40(1): 1-18.
[2] 康重庆, 姚良忠. 高比例可再生能源电力系统的关键科学问题与理论研究框架[J]. 电力系统自动化, 2017, 41(9): 2-11.
KANG C Q, YAO L Z.Key scientific issues and theoretical research framework for power systems with high proportion of renewable energy[J]. Automation of electric power systems, 2017, 41(9): 2-11.
[3] 张耀文, 张政权, 刘庆想, 等. 新型双向储能变流器分析与研究[J]. 太阳能学报, 2022, 43(4): 82-89.
ZHANG Y W, ZHANG Z Q, LIU Q X, et al.Analysis and research of new bidirectional energy storage converter[J]. Acta energiae solaris sinica, 2022, 43(4): 82-89.
[4] 李子欣, 高范强, 赵聪, 等. 电力电子变压器技术研究综述[J]. 中国电机工程学报, 2018, 38(5): 1274-1289.
LI Z X, GAO F Q, ZHAO C, et al.Research review of power electronic transformer technologies[J]. Proceedings of the CSEE, 2018, 38(5): 1274-1289.
[5] 吴智泉, 贾纯超, 陈磊, 等. 新型电力系统中储能创新方向研究[J]. 太阳能学报, 2021, 42(10): 444-451.
WU Z Q, JIA C C, CHEN L, et al.Research on innovative direction of energy storage in new power system construction[J]. Acta energiae solaris sinica, 2021, 42(10): 444-451.
[6] 许诘翊, 刘威, 刘树, 等. 电力系统变流器构网控制技术的现状与发展趋势[J]. 电网技术, 2022, 46(9): 3586-3594.
XU J Y, LIU W, LIU S, et al.Current state and development trends of power system converter grid-forming control technology[J]. Power system technology, 2022, 46(9): 3586-3594.
[7] 朱作滨, 黄绍平, 李振兴. 微网储能变流器平滑切换控制方法的研究[J]. 电力系统及其自动化学报, 2019, 31(12): 137-143.
ZHU Z B, HUANG S P, LI Z X.Research on smooth switching control method for micro-grid power converter system[J]. Proceedings of the CSU-EPSA, 2019, 31(12): 137-143.
[8] 周皓, 李伟力. 基于分频控制的微电网储能变流器并网电能质量主动控制策略[J]. 太阳能学报, 2021, 42(2): 330-337.
ZHOU H, LI W L.Grid-connecting power quality active control strategy for microgrid power conversion frequency-dividing control[J]. Acta energiae solaris sinica, 2021, 42(2): 330-337.
[9] 谭丽平, 谭鑫, 王立娜, 等. 电网电压不平衡下考虑电流峰值限制的储能变流器协调控制策略[J]. 高压电器, 2022, 58(7): 111-118.
TAN L P, TAN X, WANG L N, et al.Coordinated control strategy of power conversion system considering current peak limit under unbalanced grid voltage[J]. High voltage apparatus, 2022, 58(7): 111-118.
[10] 朱作滨, 黄绍平. 基于VSG微网储能变流器无缝切换控制策略研究[J]. 控制工程, 2021, 28(3): 488-494.
ZHU Z B, HUANG S P.Research on seamless switching control strategy of microgrid power converter system based on VSG[J]. Control engineering of China, 2021, 28(3): 488-494.
[11] 吴东, 汪海宁, 房志学, 等. 基于微网储能变流器的故障穿越控制[J]. 太阳能学报, 2020, 41(10): 66-73.
WU D, WANG H N, FANG Z X, et al.Fault ride-through control based on microgrid energy storage converter[J]. Acta energiae solaris sinica, 2020, 41(10): 66-73.
[12] ROSSO R, WANG X F, LISERRE M, et al.Grid-forming converters: an overview of control approaches and future trends[C]//2020 IEEE Energy Conversion Congress and Exposition (ECCE). Detroit, MI, USA, 2020: 4292-4299.
[13] FAN B, LIU T, ZHAO F Z, et al.A review of current-limiting control of grid-forming inverters under symmetrical disturbances[J]. IEEE open journal of power electronics, 2022, 3: 955-969.
[14] LASSETER R H, CHEN Z, PATTABIRAMAN D.Grid-forming inverters: a critical asset for the power grid[J]. IEEE journal of emerging and selected topics in power electronics, 2020, 8(2): 925-935.
[15] ZHOU Z X, WANG W Z, LAN T, et al.Dynamic performance evaluation of grid-following and grid-forming inverters for frequency support in low inertia transmission grids[C]//2021 IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe). Espoo, Finland, 2021: 1-5.
[16] JIANG Y, BERNSTEIN A, VOROBEV P, et al.Grid-forming frequency shaping control for low-inertia power systems[J]. IEEE control systems letters, 2021, 5(6): 1988-1993.
[17] 桑顺, 齐琛, 张新松, 等. 永磁直驱风电机组的构网型控制与黑启动[J]. 电网技术, 2022, 46(8): 3168-3180.
SANG S, QI C, ZHANG X S, et al.Grid-forming control and black start of PMSG-based direct-driven wind turbine[J]. Power system technology, 2022, 46(8): 3168-3180.
[18] 郭小龙, 杨桂兴, 张彦军, 等. 构网型储能变流器并网系统SISO环路增益建模与重塑控制[J]. 电气技术, 2023, 24(2): 24-31, 51.
GUO X L, YANG G X, ZHANG Y J, et al.Modeling and reshaping control of single input and single output loop gain of the grid-forming energy storage converter grid-connected system[J]. Electrical engineering, 2023, 24(2): 24-31, 51.
[19] LIN Y SH,ETO J H,JOHNSON B B, et al.Research Roadmap on Grid-Forming Inverters[R]. National Renewable Energy Laboratory, 2020.
[20] COLLADOS-RODRIGUEZ C, CHEAH-MANE M, CIFUENTES-GARCIA F J, et al. Grid-following and grid-forming converter control comparison under fault conditions[C]//2021 IEEE 12th Energy Conversion Congress & Exposition-Asia(ECCE-Asia). Singapore, Singapore, 2021: 598-603.
[21] VERBE S C, SHIGENOBU R, ITO M.Comparative study of GFM-grid and GFL-grid in islanded operation[C]//2021 IEEE PES Innovative Smart Grid Technologies-Asia(ISGT Asia). Brisbane, Australia, 2021: 1-5.
[22] 张春雪, 黎灿兵, 冯伟, 等. 孤立运行光/储微电网中储能变流器暂态功率波动协调抑制策略[J]. 中国电机工程学报, 2018, 38(8): 2302-2314, 2540.
ZHANG C X, LI C B, FENG W, et al.A coordinated transient power fluctuation suppression strategy for power conversion system in islanded PV/storage microgrid[J]. Proceedings of the CSEE, 2018, 38(8): 2302-2314, 2540.
[23] 周孝信, 陈树勇, 鲁宗相, 等. 能源转型中我国新一代电力系统的技术特征[J]. 中国电机工程学报, 2018, 38(7): 1893-1904, 2205.
ZHOU X X, CHEN S Y, LU Z X, et al.Technology features of the new generation power system in China[J]. Proceedings of the CSEE, 2018, 38(7): 1893-1904, 2205.
[24] 徐政. 高比例非同步机电源电网面临的三大技术挑战[J]. 南方电网技术, 2020, 14(2): 1-9.
XU Z.Three technical challenges faced by power grids with high proportion of non-synchronous machine sources[J]. Southern power system technology, 2020, 14(2): 1-9.
[25] ZHU D H, ZHOU S Y, ZOU X D, et al.Improved design of PLL controller for LCL-type grid-connected converter in weak grid[J]. IEEE transactions on power electronics, 2020, 35(5): 4715-4727.
[26] LI X, LIN H.A design method of phase-locked loop for grid-connected converters considering the influence of current loops in weak grid[J]. IEEE journal of emerging and selected topics in power electronics, 2020, 8(3): 2420-2429.
[27] 屈子森. 高比例新能源电力系统电压源型变流器同步稳定性分析与控制技术[D]. 杭州: 浙江大学, 2021.
QU Z S.Synchronizing stability analysis and control technology of voltage source converters in power system with high-penetration renewables[D]. Hangzhou: Zhejiang University, 2021.
[28] 詹长江, 吴恒, 王雄飞, 等. 构网型变流器稳定性研究综述[J]. 中国电机工程学报, 2023, 43(6): 2339-2358, 24.
ZHAN C J, WU H, WANG X F, et al.An overview of stability studies of grid-forming voltage source converters[J]. Proceedings of the CSEE, 2023, 43(6): 2339-2358, 24.
[29] UNRUH P, NUSCHKE M, STRAUSS P, et al.Overview on grid-forming inverter control methods[J]. Energies, 2020, 13(10): 2589.
[30] 谢小荣, 贺静波, 毛航银, 等. “双高” 电力系统稳定性的新问题及分类探讨[J]. 中国电机工程学报, 2021, 41(2): 461-474, 8.
XIE X R, HE J B, MAO H Y, et al.New issues and classification of power system stability with high shares of renewables and power electronics[J]. Proceedings of the CSEE, 2021, 41(2): 461-474, 8.
[31] 徐政. 电力系统广义同步稳定性的物理机理与研究途径[J]. 电力自动化设备, 2020, 40(9): 3-9.
XU Z.Physical mechanism and research approach of generalized synchronous stability for power systems[J]. Electric power automation equipment, 2020, 40(9): 3-9.
[32] MÍREZ J. A review of droop control implementation in microgrids[C]//2019 International Conference on Mechatronics, Electronics and Automotive Engineering (ICMEAE). Cuernavaca, Mexico, 2019: 146-150.
[33] 朱珊珊, 汪飞, 郭慧, 等. 直流微电网下垂控制技术研究综述[J]. 中国电机工程学报, 2018, 38(1): 72-84, 344.
ZHU S S, WANG F, GUO H, et al.Review of research on sag control technology for DC microgrids[J]. Proceedings of the CSEE, 2018, 38(1): 72-84, 344.
[34] 刘子文, 苗世洪, 范志华, 等. 基于自适应下垂特性的孤立直流微电网功率精确分配与电压无偏差控制策略[J]. 电工技术学报, 2019, 34(4): 795-806.
LIU Z W, MIAO S H, FAN Z H, et al.Accurate power allocation and zero steady-state error voltage control of the islanding DC microgird based on adaptive droop characteristics[J]. Transactions of China Electrotechnical Society, 2019, 34(4): 795-806.
[35] 吕志鹏, 吴鸣, 黄红, 等. 一种具有网络自适应能力的分布式电源改进下垂控制策略[J]. 电网技术, 2018, 42(9): 2948-2957.
LYU Z P, WU M, HUANG H, et al.An improved droop control with network self-adaptability for distributed generation[J]. Power system technology, 2018, 42(9): 2948-2957.
[36] BECK H P, HESSE R.Virtual synchronous machine[C]//2007 9th International Conference on Electrical Power Quality and Utilisation. Barcelona, Spain, 2007: 1-6.
[37] 刘钊汛, 秦亮, 杨诗琦, 等. 面向新型电力系统的电力电子变流器虚拟同步控制方法评述[J]. 电网技术, 2023, 47(1): 1-15, 1.
LIU Z X, QIN L, YANG S Q, et al.Review on virtual synchronous generator control technology of power electronic converter in power system based on new energy[J]. Power system technology, 2023, 47(1): 1-15, 1.
[38] 曹炜, 钦焕乘, 陆建忠, 等. 新型电力系统下虚拟同步机的定位和应用前景展望[J]. 电力系统自动化, 2023, 47(4): 190-207.
CAO W, QIN H C, LU J Z, et al.Orientation and application prospect of virtual synchronous generator in new power system[J]. Automation of electric power systems, 2023, 47(4): 190-207.
[39] ROCABERT J, LUNA A, BLAABJERG F, et al.Control of power converters in AC microgrids[J]. IEEE transactions on power electronics, 2012, 27(11): 4734-4749.
[40] 倪泽龙, 林钰钧, 王治涛, 等. 基于模型预测的虚拟同步机控制储能调频研究[J]. 电力系统保护与控制, 2022, 50(14): 85-93.
NI Z L, LIN Y J, WANG Z T, et al.Research on frequency regulation of VSG controlled energy storages based on model predictive control[J]. Power system protection and control, 2022, 50(14): 85-93.
[41] 王国栋, 李海洋. 基于阻抗匹配的构网型逆变器无功精确控制[J]. 电力电子技术, 2022, 56(6): 45-48.
WANG G D, LI H Y.Accurate control of reactive power of grid-forming inverters based on impedance matching[J]. Power electronics, 2022, 56(6): 45-48.
[42] 滕奇. 基于虚拟同步机的逆变器协调控制策略研究[D].无锡: 江南大学, 2022.
TENG Q.Research on inverter coordinated control strategy based on virtual synchronous machine[D]. Wuxi: Jiangnan University, 2022.
[43] HARNEFORS L, HINKKANEN M, RIAZ U, et al.Robust analytic design of power-synchronization control[J]. IEEE transactions on industrial electronics, 2019, 66(8): 5810-5819.
[44] 王顺亮, 孙瑞婷, 马俊鹏, 等. 弱电网下并网逆变器正交功率同步控制策略[J]. 中国电机工程学报, 2022, 42(23): 8475-8485, 6.
WANG S L, SUN R T, MA J P, et al.Orthogonal power synchronization control for gird-connected inverters under weak grid[J]. Proceedings of the CSEE, 2022, 42(23): 8475-8485, 6.
[45] 侯川川, 刘澳, 朱淼, 等. 基于功率同步控制的逆变器并网相位误差机理[J]. 中国电机工程学报, 2024, 44(5): 1962-1974.
HOU C C, LIU A, ZHU M, et al.Mechanism of grid connected phase error of inverters based on power synchronization control[J]. Proceedings of the CSEE, 2024, 44(5): 1962-1974.
[46] HARNEFORS L, MAHAFUGUR RAHMAN F M, HINKKANEN M, et al. Reference-feedforward power-synchronization control[J]. IEEE transactions on power electronics, 2020, 35(9): 8878-8881.
[47] AWAL M A, HUSAIN I.Unified virtual oscillator control for grid-forming and grid-following converters[J]. IEEE journal of emerging and selected topics in power electronics, 2021, 9(4): 4573-4586.
[48] 罗龙, 李耀华, 李子欣, 等. 基于范德波尔振荡器和PQ控制的微电网并离网协调控制策略[J]. 电力自动化设备, 2023, 43(1): 130-139.
LUO L, LI Y H, LI Z X, et al.On-grid and off-grid coordinated control strategy of microgrid based on Van der Pol oscillator and PQ control[J]. Electric power automation equipment, 2023, 43(1): 130-139.
[49] AWAL M A, YU H, HUSAIN I, et al.Selective harmonic current rejection for virtual oscillator controlled grid-forming voltage source converters[J]. IEEE transactions on power electronics, 2020, 35(8): 8805-8818.
[50] 罗众志. 基于虚拟振荡器的微网逆变器控制策略研究[D]. 徐州: 中国矿业大学, 2021.
LUO Z Z.Research on control strategy of microgrid inverter based on virtual oscillator[D]. Xuzhou: China University of Mining and Technology, 2021.
[51] 耿华, 何长军, 刘浴霜, 等. 新能源电力系统的暂态同步稳定研究综述[J]. 高电压技术, 2022, 48(9): 3367-3383.
GENG H, HE C J, LIU Y S, et al.Overview on transient synchronization stability of renewable-rich power systems[J]. High voltage engineering, 2022, 48(9): 3367-3383.
[52] 石荣亮, 王斌, 黄冀, 等. 储能虚拟同步机的并网阻尼特性分析与改进策略[J]. 太阳能学报, 2023, 44(7): 30-38.
SHI R L, WANG B, HUANG J, et al.Analysis and improvement strtegy of grid-connected damping characteristic for energy storage vsg[J]. Acta energiae solaris sinica, 2023, 44(7): 30-38.
[53] 段洁琼. 储能接入对交直流混联系统稳定性影响研究[D]. 北京: 华北电力大学, 2022.
DUAN J Q.Study on the influence of energy storage access on the stability of AC-DC hybrid system[D]. Beijing: North China Electric Power University, 2022.
[54] 王新宝, 葛景, 韩连山, 等. 构网型储能支撑新型电力系统建设的思考与实践[J]. 电力系统保护与控制, 2023, 51(5): 172-179.
WANG X B, GE J, HAN L S, et al.Theory and practice of grid-forming BESS supporting the construction of a new type of power system[J]. Power system protection and control, 2023, 51(5): 172-179.
[55] 陈凌宇, 刘敏, 孙桐, 等. 基于电池储能的单级式构网型不间断供电系统[J]. 电力电子技术, 2022, 56(5): 1-4, 12.
CHEN L Y, LIU M, SUN T, et al.Single stage grid formed uninterruptible power supply system based on battery energy storage[J]. Power electronics, 2022, 56(5): 1-4, 12.
[56] 秦世耀, 齐琛, 李少林, 等. 电压源型构网风电机组研究现状及展望[J]. 中国电机工程学报, 2023, 43(4): 1314-1333, 5.
QIN S Y, QI C, LI S L, et al.Review of the voltage-source grid forming wind turbine[J]. Proceedings of the CSEE, 2023, 43(4): 1314-1333, 5.
[57] 刘京波, 吴林林, 李琰, 等. 构网型光储混合供电系统及其协调控制策略[J]. 电力电子技术, 2023, 57(1): 92-95.
LIU J B, WU L L, LI Y, et al.A grid forming photovoltaic storage hybrid power supply system and its coordination control strategy[J]. Power electronics, 2023, 57(1): 92-95.
[58] ZHAO F Z, WANG X F, ZHOU Z C, et al.Control interaction modeling and analysis of grid-forming battery energy storage system for offshore wind power plant[J]. IEEE transactions on power systems, 2022, 37(1): 497-507.
[59] BHATTACHARYYA S, SINGH B.Synchronization technique for PV-wind-battery based grid forming converter with DFIG[C]//2021 IEEE 6th International Conference on Computing, Communication and Automation (ICCCA). Arad, Romania, 2021: 765-770.
[60] 刘文龙, 吕志鹏, 刘海涛. 电力电子化配电台区形态发展以及运行控制技术综述[J]. 中国电机工程学报, 2023, 43(13): 4899-4922.
LIU W L, LYU Z P, LIU H T.Overview of the development and operation control technology of power electronic distribution stations[J]. Proceedings of the CSEE, 2023, 43(13): 4899-4922.
[61] 张立坚, 徐铭倩, 卞春兵. 同步电机零序电流保护动作的原因分析及处理[J]. 中国水能及电气化, 2020(3): 49-51, 57.
ZHANG L J, XU M Q, BIAN C B.Cause analysis and treatment of zero sequence current protection action of synchronous motor[J]. China water power & electrification, 2020(3): 49-51, 57.
[62] KROPOSKI B, JOHNSON B, ZHANG Y C, et al.Achieving a 100% renewable grid: operating electric power systems with extremely high levels of variable renewable energy[J]. IEEE power and energy magazine, 2017, 15(2): 61-73.
PDF(1167 KB)

Accesses

Citation

Detail

Sections
Recommended

/