STUDY ON DYNAMIC RESPONSE CHARACTERISTICS OF WIND TURBINE ROTOR FLUID-STRUCTURE INTERACTION UNDER TYPHOON WIND SPEED

Zhang Ruixing, An Liqiang, He Lun, Zhang Ying

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (9) : 465-474.

PDF(3811 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(3811 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (9) : 465-474. DOI: 10.19912/j.0254-0096.tynxb.2023-0694

STUDY ON DYNAMIC RESPONSE CHARACTERISTICS OF WIND TURBINE ROTOR FLUID-STRUCTURE INTERACTION UNDER TYPHOON WIND SPEED

  • Zhang Ruixing1,2, An Liqiang1,2, He Lun1,2, Zhang Ying3
Author information +
History +

Abstract

High-precision fluid-structure interaction simulation is an effective method for studying the structural reliability of wind turbines under typhoon conditions. However, the substantial computational costs and issues related to negative volume grids significantly affect the efficiency and stability of simulation. In this study, an improved fluid-structure interaction method was applied to investigate the load and response characteristics of wind turbines at different wind spe eds. Its accuracy was validated using NREL data and wind turbine blade modal vibration experiments. Compared to traditional fluid-structure coupling methods, this approach reduces the number of dynamic grids used, avoids negative volume grids, enhances computational stability, and shortens computation time by approximately 50%. Simulation results indicate that increasing the wind speed from 25 m/s to 35 m/s leads to a 6.8-fold increase in fluctuation amplitude for blade thrust and a 9.8-fold increase for torque loads. Additionally, structural buckling was observed on the suction side of the blade, which is close to the location of blade fractures observed in actual typhoon conditions. This may indicate a structural weak point of wind turbine blades under typhoon environments, offering valuable insights for subsequent wind turbine design optimization.

Key words

wind turbine blades / typhoon environment / vibration analysis fluid structure interaction / numerical models / blade strength

Cite this article

Download Citations
Zhang Ruixing, An Liqiang, He Lun, Zhang Ying. STUDY ON DYNAMIC RESPONSE CHARACTERISTICS OF WIND TURBINE ROTOR FLUID-STRUCTURE INTERACTION UNDER TYPHOON WIND SPEED[J]. Acta Energiae Solaris Sinica. 2024, 45(9): 465-474 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0694

References

[1] CHEN X, XU J Z.Structural failure analysis of wind turbines impacted by super typhoon Usagi[J]. Engineering failure analysis, 2016, 60: 391-404.
[2] CHOU J S, OU Y C, LIN K Y, et al.Structural failure simulation of onshore wind turbines impacted by strong winds[J]. Engineering structures, 2018, 162: 257-269.
[3] DAO C, KAZEMTABRIZI B, CRABTREE C.Wind turbine reliability data review and impacts on levelised cost of energy[J]. Wind energy, 2019, 22(12): 1848-1871.
[4] 安利强, 孙阳, 王鹏, 等. 考虑随机参数的风电机组台风载荷特征研究[J]. 太阳能学报, 2021, 42(4): 417-423.
AN L Q, SUN Y, WANG P, et al.Study on typhoon load characteristics of wind turbines considering random parameters[J]. Acta energiae solaris sinica, 2021, 42(4): 417-423.
[5] 柯世堂, 王硕, 赵永发, 等. 台风-浪-流耦合作用下海上10 MW级特大型风力机风荷载特性分析[J]. 振动工程学报, 2023, 36(2): 299-310.
KE S T, WANG S, ZHAO Y F, et al.Wind load characteristics of 10 MW-level super-large offshore wind turbine under the coupling effect of typhoon-wave-current[J]. Journal of vibration engineering, 2023, 36(2): 299-310.
[6] 王立忠, 洪义, 高洋洋, 等. 近海风电结构台风环境动力灾变与控制[J]. 力学学报, 2023, 55(3): 567-587.
WANG L Z, HONG Y, GAO Y Y, et al.Dynamic catastrophe and control of offshore wind power structures in typhoon environment1)[J]. Chinese journal of theoretical and applied mechanics, 2023, 55(3): 567-587.
[7] ROSEMEIER M, BERRING P, BRANNER K.Non-linear ultimate strength and stability limit state analysis of a wind turbine blade[J]. Wind energy, 2016, 19(5): 825-846.
[8] NELSON B, LIN T Y, QUÉMÉNER Y, et al. Extreme typhoon loads effect on the structural response of an offshore wind turbine[C]//Proceedings of 7th PAAMES and AMEC2016, Hong Kong, China, 2016, 13: 14.
[9] HAN T, MCCANN G, MÜCKE T A, et al. How can a wind turbine survive in tropical cyclone?[J]. Renewable energy, 2014, 70: 3-10.
[10] ZHANG R X, HE L, AN L Q.A dynamic probabilistic analysis method for wind turbine rotor based on the surrogate model[J]. Journal of renewable and sustainable energy, 2023, 15(1): 013304.
[11] XU M, WEI M J, YANG T, et al.An embedded boundary approach for the simulation of a flexible flapping wing at different density ratio[J]. European journal of mechanics - B, 2016, 55: 146-156.
[12] CARRIÓN M, STEIJL R, WOODGATE M, et al. Aeroelastic analysis of wind turbines using a tightly coupled CFD-CSD method[J]. Journal of fluids and structures, 2014, 50: 392-415.
[13] MIAO W P, LI C, WANG Y B, et al.Study of adaptive blades in extreme environment using fluid-structure interaction method[J]. Journal of fluids and structures, 2019, 91: 102734.
[14] 王蕤, 仲继泽, 徐自力, 等. 动网格区域对叶片颤振流固耦合计算效率及精度的影响[J]. 推进技术, 2017, 38(9): 2086-2092.
WANG R, ZHONG J Z, XU Z L, et al.Effects of coverage of dynamic mesh region on efficiency and accuracy of coupled fluid structure simulation for blade flutter[J]. Journal of propulsion technology, 2017, 38(9): 2086-2092.
[15] BAO M L, DING Y, SANG M S, et al.Modeling and evaluating nodal resilience of multi-energy systems under windstorms[J]. Applied energy, 2020, 270: 115136.
[16] JONKMAN J, BUTTERFIELD S, MUSIAL W, et al.Definition of a 5-MW reference wind turbine for offshore system development[R]. National Renewable Energy Lab(NREL), Golden, CO(United States), 2009.
[17] 刘乐璠, 郑直, 闵为, 等. 基于动态重叠网格的阀芯振荡空化的研究[J]. 液压与气动, 2023, 47(5): 34-41.
LIU L F, ZHENG Z, MIN W, et al.Research on cavitation of valve core oscillation based on dynamic overset mesh[J]. Chinese hydraulics & pneumatics, 2023, 47(5): 34-41.
[18] RIYADH A A, ZISHAN A M, KHALIFA O F.Performance enhancement of a small-scale wind turbine featuring morphed trailing edge[J]. Sustainable energy technologies and assessments, 2021, 46: 101229.
[19] 胡超, 周丙浩, 马勇, 等. 基于FAST和Simulink的海上风力机叶片扭角和弦长优化设计研究[J]. 太阳能学报, 2021, 42(3): 135-141.
HU C, ZHOU B H, MA Y, et al.Optimization research of twist angle and chord length of offshore wind turbine blade based on fast and simulink[J]. Acta energiae solaris sinica, 2021, 42(3): 135-141.
[20] TANG D, BAO S Y, LUO L J, et al.A CFD/CSD coupled method with high order and its applications in flow induced vibrations of tube arrays in cross flow[J]. Annals of nuclear energy, 2019, 130: 347-356.
PDF(3811 KB)

Accesses

Citation

Detail

Sections
Recommended

/