ENHANCED PERFORMANCE OF CRYSTALLINE SILICON HETEROJUNCTION SOLAR CELLS THROUGH LIGHT INJECTION

Shen Xuyu, Huang Xiner, Lyu Wenhui

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (4) : 519-523.

PDF(1798 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1798 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (4) : 519-523. DOI: 10.19912/j.0254-0096.tynxb.2023-0724

ENHANCED PERFORMANCE OF CRYSTALLINE SILICON HETEROJUNCTION SOLAR CELLS THROUGH LIGHT INJECTION

  • Shen Xuyu1,2, Huang Xiner3, Lyu Wenhui1
Author information +
History +

Abstract

This paper fabricated industrially-sized crystalline silicon heterojunction (HJT) solar cells and investigated the effect of light injection on the optoelectronic performance of the cells. The experimental results demonstrate that light injection effectively enhances the photovoltaic conversion efficiency of HJT solar cells. After light injection, the absolute improvement in the photovoltaic conversion efficiency of the cells reaches 0.33%. Combined with the I-V test under simulated illumination and Suns-Voc test, it is confirmed that the light injection can reduce the series resistance of the cell. Therefore, the main physical mechanism of enhanced cell performance is attributed to the reduction in series resistance by light injection.

Key words

silicon solar cells / heterojunctions / light injection / photoelectric conversion efficiency / series resistance

Cite this article

Download Citations
Shen Xuyu, Huang Xiner, Lyu Wenhui. ENHANCED PERFORMANCE OF CRYSTALLINE SILICON HETEROJUNCTION SOLAR CELLS THROUGH LIGHT INJECTION[J]. Acta Energiae Solaris Sinica. 2024, 45(4): 519-523 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0724

References

[1] MIN B, MULLER M, WAGNER H, et al.A roadmap toward 24% efficient PERC solar cells in industrial mass production[J]. IEEE journal of photovoltaics, 2017, 7(6): 1541-1550.
[2] 张云龙, 陈新亮, 周忠信, 等. 晶体硅太阳电池研究进展[J]. 太阳能学报, 2021, 42(10): 49-60.
ZHANG Y L, CHEN X L, ZHOU Z X, et al.Research progress of crystalline silicon solar cells[J]. Acta energiae solaris sinica, 2021, 42(10): 49-60.
[3] SCHMIDT J, PEIBST R, BRENDEL R.Surface passivation of crystalline silicon solar cells: present and future[J]. Solar energy materials and solar cells, 2018, 187: 39-54.
[4] LONG W, YIN S, PENG F G, et al.On the limiting efficiency for silicon heterojunction solar cells[J]. Solar energy materials and solar cells, 2021, 231: 111291.
[5] RU X N, QU M H, WANG J Q, et al.25.11% efficiency silicon heterojunction solar cell with low deposition rate intrinsic amorphous silicon buffer layers[J]. Solar energy materials and solar cells, 2020, 215: 110643.
[6] DOMARADZKI J, KACZMAREK D, DRABCZYK K, et al.Investigations of electrical and optical properties of functional TCO thin films[J]. Materials science-poland, 2015, 33(2): 363-368.
[7] 黄金, 鲍少娟, 鲁林峰, 等. 高迁移率的钛掺杂氧化铟薄膜在晶硅/非晶硅异质结电池上的应用研究[J]. 稀有金属材料与工程, 2021, 50(3): 848-852.
HUANG J, BAO S J, LU L F, et al.High mobility Ti-doped In2O3 films used for amorphous/crystalline silicon heterojunction solar cells[J]. Rare metal materials and engineering, 2021, 50(3): 848-852.
[8] 何永才, 董刚强, 张小燕, 等. 高效硅基异质结太阳电池的ITO薄膜研究[J]. 太阳能学报, 2020, 41(4): 1-6.
HE Y C, DONG G Q, ZHANG X Y, et al.Investigation on high quality ITO films used for SHJ solar cell[J]. Acta energiae solaris sinica, 2020, 41(4): 1-6.
[9] 李力猛. 微晶硅/晶体硅异质结太阳电池的模拟与优化[D]. 呼和浩特: 内蒙古师范大学, 2009.
LI L M.Simulation and optimization of microcrystalline silicon/crystalline silicon hetero junction solar cells[D]. Hohhot: Inner Mongolia Normal University, 2009.
[10] 杨大洋, 刘淑平, 张棚, 等. 微晶硅/晶体硅/微晶硅异质结太阳能电池窗口层的模拟计算与优化[J]. 光电子技术, 2014, 34(4): 288-294.
YANG D Y, LIU S P, ZHANG P, et al.The window layer of μc-si(p)/c-si(N)/μc-si(n+) heterojunction solar cell in simulation and optimization[J]. Optoelectronic technology, 2014, 34(4): 288-294.
[11] 俞健, 卞剑涛, 刘毓成, 等. 硅异质结太阳电池接触特性及铜金属化研究[J]. 太阳能学报, 2019, 40(7): 1959-1964.
YU J, BIAN J T, LIU Y C, et al.Investigation of metal-TCO contact and copper metallization of silicon heterojunction solar cells[J]. Acta energiae solaris sinica, 2019, 40(7): 1959-1964.
[12] SCHMIDT J, BOTHE K.Structure and transformation of the metastable boron-and oxygen-related defect center in crystalline silicon[J]. Physical review B, 2004, 69(2): 024107.
[13] HAMELMANN F U, WEICHT J A, BEHRENS G.Light-induced degradation of thin film silicon solar cells[J]. Journal of physics: conference series, 2016, 682: 012002.
[14] NIEWELT T, BROISCH J, SCHÖN J, et al. Light-induced degradation and regeneration in n-type silicon[J]. Energy procedia, 2015, 77: 626-632.
[15] KOBAYASHI E, WOLF S D, LEVRAT J, et al.Light-induced performance increase of silicon heterojunction solar cells[J]. Applied physics letters, 2016, 109(15): 153503.
[16] 张悦. 面向产业化高效硅基异质结电池的关键问题研究[D]. 北京: 北京工业大学, 2017.
ZHANG Y.Research on key problems of industrialization-ori ented high-efficiency silicon-based heterojunction battery[D]. Beijing: Beijing University of Technology, 2017.
[17] GREEN M A.Accuracy of analytical expressions for solar cell fill factors[J]. Solar cells, 1982, 7(3): 337-340.
[18] WOLF M, RAUSCHENBACH H.Series resistance effects on solar cell measurements[J]. Advanced energy conversion, 1963, 3(2): 455-479.
PDF(1798 KB)

Accesses

Citation

Detail

Sections
Recommended

/