LFAC TRANSMISSION SCHEME OF OFFSHORE DRU IN PARALLEL WITH GFL CONVERTER AND GFM CONVERTER

Cheng Zhijiang, Jiang Minghao, Yang Tianxiang, Yang Zhiqian, Aisikaer, Guo Rui

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (9) : 493-500.

PDF(17030 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(17030 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (9) : 493-500. DOI: 10.19912/j.0254-0096.tynxb.2023-0725

LFAC TRANSMISSION SCHEME OF OFFSHORE DRU IN PARALLEL WITH GFL CONVERTER AND GFM CONVERTER

  • Cheng Zhijiang1, Jiang Minghao1, Yang Tianxiang1, Yang Zhiqian2, Aisikaer2, Guo Rui2
Author information +
History +

Abstract

The offshore wind power low-frequency AC transmission system based on uncontrollable rectifier units (DRU) lacks the capability of power feedback, necessitating the use of grid-forming converters to enable self-networking of offshore wind farms. At the same time, considering the positive impact of the fast power response capability inherent in traditional grid-following converters on offshore wind power generation, this study uses a wind turbine unit composed of a six-phase permanent magnet synchronous generator as the research object. It elucidates the topological structure and operational characteristics of using parallel converters with two control strategies in the wind turbine unit, transmitting power through the DRU low-frequency AC system. The grid-forming control strategy and grid-following control strategy for the wind turbine's grid-side converter are respectively designed. On this basis, the issue of power imbalance between the two grid-side converters is discussed, and a circulation suppression strategy is further developed to enable the transmission of wind power through the DRU. The feasibility of the proposed scheme is verified by constructing a Simulink simulation model and RT-LAB hardware-in-the-loop simulation system.

Key words

offshore wind power / electric power transmission / ?power electronics / ?diode rectifier unit / hardware-in-the-loop simulation

Cite this article

Download Citations
Cheng Zhijiang, Jiang Minghao, Yang Tianxiang, Yang Zhiqian, Aisikaer, Guo Rui. LFAC TRANSMISSION SCHEME OF OFFSHORE DRU IN PARALLEL WITH GFL CONVERTER AND GFM CONVERTER[J]. Acta Energiae Solaris Sinica. 2024, 45(9): 493-500 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0725

References

[1] 黄晓尧, 谢瑞, 裘鹏, 等. 远海风电两种送出方案的经济性评估[J]. 浙江电力, 2022, 41(7): 1-7.
HUANG X Y, XIE R, QIU P, et al.Economic evaluation of two transmission methods for long-distance offshore wind power[J]. Zhejiang electric power, 2022, 41(7): 1-7.
[2] YUAN X B, WANG F, BOROYEVICH D, et al.DC-link voltage control of a full power converter for wind generator operating in weak-grid systems[J]. IEEE transactions on power electronics, 2009, 24(9): 2178-2192.
[3] 郑天文, 陈来军, 陈天一, 等. 虚拟同步发电机技术及展望[J]. 电力系统自动化, 2015, 39(21): 165-175.
ZHENG T W, CHEN L J, CHEN T Y, et al.Review and prospect of virtual synchronous generator technologies[J]. Automation of electric power systems, 2015, 39(21): 165-175.
[4] 李翼翔, 田震, 唐英杰, 等. 考虑构网型与跟网型逆变器交互的孤岛微电网小信号稳定性分析[J]. 电力自动化设备, 2022, 42(8): 11-18.
LI Y X, TIAN Z, TANG Y J, et al.Small-signal stability analysis of island microgrid considering interaction between grid-forming converter and grid-following converter[J]. Electric power automation equipment, 2022, 42(8): 11-18.
[5] 李啸骢, 罗雪丽, 侯立亮, 等. 基于分数阶LCL滤波器的风力发电网侧控制研究[J]. 太阳能学报, 2022, 43(12): 383-391.
LI X C, LUO X L, HOU L L, et al.Research on grid-side control of wind power generation based on fractional LCL filter[J]. Acta energiae solaris sinica, 2022, 43(12): 383-391.
[6] 陈鹤林, 徐政. 海上风电场柔性直流输电并网系统暂态特性研究[J]. 太阳能学报, 2015, 36(2): 430-439.
CHEN H L, XU Z.Study on transient behavior of DC flexible on-grid transmission system in offshore wind farm[J]. Acta energiae solaris sinica, 2015, 36(2): 430-439.
[7] 吴俊. 六相同步风力发电机最大功率跟踪控制研究[D]. 成都: 西南交通大学, 2017.
WU J.Research on maximum power point trackink control of six-phase synchronous wind turbine[D]. Chengdu: Southwest Jiaotong University, 2017.
[8] TANG Y J, ZHANG Z R, XU Z.DRU based low frequency AC transmission scheme for offshore wind farm integration[J]. IEEE transactions on sustainable energy, 2021, 12(3): 1512-1524.
[9] 张永超, 王维庆, 王海云, 等. VSC-HVDC逆变侧的VSG转动惯量和阻尼系数模糊自适应控制[J]. 太阳能学报, 2021, 42(11): 463-469.
ZHANG Y C, WANG W Q, WANG H Y, et al.Fuzzy adaptive control of VSG moment of inertia and damping coefficient on VSC-HVDC inverter side[J]. Acta energiae solaris sinica, 2021, 42(11): 463-469.
[10] BLASCO-GIMENEZ R, AÑÓ-VILLALBA S, RODRÍGUEZ-D'DERLÉE J, et al. Distributed voltage and frequency control of offshore wind farms connected with a diode-based HVDC link[J]. IEEE transactions on power electronics, 2010, 25(12): 3095-3105.
[11] 张哲任, 金砚秋, 徐政. 两种基于构网型风机和二极管整流单元的海上风电送出方案[J]. 高电压技术, 2022, 48(6): 2098-2107.
ZHANG Z R, JIN Y Q, XU Z.Two offshore wind farm integration schemes based on grid forming wind turbines and diode rectifier unit[J]. High voltage engineering, 2022, 48(6): 2098-2107.
[12] 唐英杰, 张哲任, 徐政. 基于二极管不控整流单元的远海风电低频交流送出方案[J]. 中国电力, 2020, 53(7): 44-54, 168.
TANG Y J, ZHANG Z R, XU Z.Diode rectifier unit based LFAC transmission for offshore wind farm integration[J]. Electric power, 2020, 53(7): 44-54, 168.
[13] YU L J, LI R, XU L, et al.Analysis and control of offshore wind farms connected with diode rectifier-based HVDC system[J]. IEEE transactions on power delivery, 2020, 35(4): 2049-2059.
[14] ZHANG Z R, JIN Y Q, XU Z.Grid-forming control of wind turbines for diode rectifier unit based offshore wind farm integration[J]. IEEE transactions on power delivery, 2023, 38(2): 1341-1352.
[15] ROCABERT J, LUNA A, BLAABJERG F, et al.Control of power converters in AC microgrids[J]. IEEE transactions on power electronics, 2012, 27(11): 4734-4749.
[16] 张继红, 白鑫, 张新, 等. 双闭环控制的光伏系统多逆变器并联运行策略[J]. 电力电子技术, 2022, 56(8): 71-75, 127.
ZHANG J H, BAI X, ZHANG X, et al.Parallel operation strategy of multiple inverters in photovoltaic system based on double closed-loop control[J]. Power electronics, 2022, 56(8): 71-75, 127.
PDF(17030 KB)

Accesses

Citation

Detail

Sections
Recommended

/