VARIABLE FLOW OPERATION STRATEGY AND BENEFIT ANALYSIS OF FLAT-PLATE SOLAR COLLECTOR SYSTEM IN LHASA REGION

Chen Yaowen, Zhuang Zhaoben, Zhao Yiting, Wang Dengjia, Liu Yanfeng

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (9) : 442-450.

PDF(1525 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1525 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (9) : 442-450. DOI: 10.19912/j.0254-0096.tynxb.2023-0773

VARIABLE FLOW OPERATION STRATEGY AND BENEFIT ANALYSIS OF FLAT-PLATE SOLAR COLLECTOR SYSTEM IN LHASA REGION

  • Chen Yaowen1,2, Zhuang Zhaoben2, Zhao Yiting2, Wang Dengjia1,2, Liu Yanfeng1,2
Author information +
History +

Abstract

According to the fluctuation of outdoor environmental parameters and the temperature fluctuation characteristics of heat storage system, a variable flow operation control strategy of solar collector system is proposed. An optimal flow optimization model was established, and the optimal flow value polynomial function under different operating conditions was regressed. The system operation performance under the constant flow operation strategy was compared and analyzed. The results show that compared with the constant flow operation mode, the net income of the solar collector system is significantly improved when using the variable flow control strategy. For the 100 m2 series parallel flat plate solar collector system in Lhasa, when the variable flow operation strategy is adopted, although the pump consumption increases, the heat collection gain is greater. Compared with the unit heat collection area flow rate of 0.02 m3/(h·m2), the net income of the collector system increases by 468.7 MJ and 6.75%.

Key words

solar system / flat-plate solar collector / solar heat collection / variable flow operation / flow control / operating costs

Cite this article

Download Citations
Chen Yaowen, Zhuang Zhaoben, Zhao Yiting, Wang Dengjia, Liu Yanfeng. VARIABLE FLOW OPERATION STRATEGY AND BENEFIT ANALYSIS OF FLAT-PLATE SOLAR COLLECTOR SYSTEM IN LHASA REGION[J]. Acta Energiae Solaris Sinica. 2024, 45(9): 442-450 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0773

References

[1] 刘艳峰, 穆婷, 罗西, 等. 光照资源富集区太阳能集中供热系统容量配置及热网管径协同设计优化研究[J]. 太阳能学报, 2023, 44(1): 85-93.
LIU Y F, MU T, LUO X, et al.Equipment capacity and heating network pipe diameter optimization of centralized solar heating system in areas abundant with solar energy resources[J]. Acta energiae solaris sinica, 2023, 44(1): 85-93.
[2] 欧阳丽萍, 袁艳平, 孙亮亮, 等. 太阳能光伏光热系统集热器连接方式的优化[J]. 太阳能学报, 2017, 38(10): 2811-2820.
OUYANG L P, YUAN Y P, SUN L L, et al.Optimization of connection mode of collector for solar photovoltaic-thermal system[J]. Acta energiae solaris sinica, 2017, 38(10): 2811-2820.
[3] 车永毅. 平板型太阳能集热器关键参数变化对其集热效率影响的研究[D]. 兰州: 兰州理工大学, 2016.
CHE Y Y.Studies on the effects of the variation of key parameters of a flat-plate solar collector on its heat-collecting efficiency[D]. Lanzhou: Lanzhou University of Technology, 2016.
[4] 赵丹. 平板太阳能集热器关键参数计算及设计优化研究[D]. 沈阳: 沈阳建筑大学, 2020.
ZHAO D.Study on key parameter calculation and design optimization of flat solar collector[D]. Shenyang: Shenyang Jianzhu University, 2020.
[5] 路阳, 刘建波, 王克振, 等. 流量对平板太阳能集热器热性能的影响[J]. 兰州理工大学学报, 2015, 41(4): 60-64.
LU Y, LIU J B, WANG K Z, et al.Effect of flow rate on thermal performance of flat-plate solar energy collector[J]. Journal of Lanzhou university of technology, 2015, 41(4): 60-64.
[6] 赵芝蓉. 严寒C区空气源热泵辅助太阳能供暖系统优化及策略研究[D]. 呼和浩特: 内蒙古工业大学, 2020.
ZHAO Z R.Optimization and strategy research of air source heat pump auxiliary solar heating system in chill region C[D]. Hohhot: Inner Mongolia University of Technology, 2020.
[7] 喻勇, 高岩, 张广宇, 等. 太阳能集热系统流量优化研究[J]. 建筑科学, 2014, 30(6): 72-76.
YU Y, GAO Y, ZHANG G Y, et al.Study on the flow rate optimization of solar collector system[J]. Building science, 2014, 30(6): 72-76.
[8] 魏一康. 太阳能直流系统工作过程分析及其运行参数调节的研究[J]. 给水排水, 1993, 19(5): 52-55, 4, 42.
WEI Y K. Analysis of working process and operational parameter regulation of the straight-flow solar water heater [J]. Water & wastewater engineering, 1993. 19(5): 52-55, 4, 42.
[9] 杨一栋. 一种强制循环太阳能热水系统的流量控制方法探讨[J]. 甘肃科技, 2021, 37(14): 36-37, 46.
YANG Y D.Discussion on flow control method of forced circulation solar hot water system[J]. Gansu science and technology, 2021, 37(14): 36-37, 46.
[10] 崔明珠. 东北地区村镇住宅太阳能采暖与热水供应技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2011.
CUI M Z.The Study on Solar Heating with Hot Water Supply for Rural Residential Buildings in Northeast China [D]. Harbin: Harbin Institute of Technology, 2011.
[11] 孔祥强, 林琳, 李瑛, 等. 平板太阳集热器热性能模拟分析[J]. 太阳能学报, 2013, 34(8): 1404-1409.
KONG X Q, LIN L, LI Y, et al.Simulation of thermal performance of flat-plate solar collectors[J]. Acta energiae solaris sinica, 2013, 34(8): 1404-1409.
[12] 王岳人, 赵芯蕊, 谷云鹏. 太阳能集热管流量和进口温度对其效率的影响[J]. 沈阳建筑大学学报(自然科学版), 2015, 31(1): 117-123.
WANG Y R, ZHAO X R, GU Y P.Flow and inlet temperature effects on the efficiency of solar thermal collector[J]. Journal of Shenyang Jianzhu University (natural science edition), 2015, 31(1): 117-123.
[13] 于国清, 汤金华, 邹志军. 太阳能热水系统蓄热水箱温度分层作用研究[J]. 建筑科学, 2007, 23(4): 70-73.
YU G Q, TANG J H, ZOU Z J.Research on the effect of temperature stratification in water tank in solar domestic hot water system[J]. Building science, 2007, 23(4): 70-73.
[14] 张鹤飞. 太阳能热利用原理与计算机模拟[M]. 西安: 西北工业大学出版社, 1990.
ZHANG H F.Principle and computer simulation of solar thermal utilization[M]. Xi'an: Northwestern Polytechnical University Press, 1990.
[15] BAVA F, DRAGSTED J, FURBO S.A numerical model to evaluate the flow distribution in a large solar collector field[J]. Solar energy, 2017, 143:31-42.
[16] DUFFIE J A, BECKMAN W A.Solar engineering of thermal processes[M]. 4th ed. Hoboken: Wiley, 2013.
[17] 何深, 陈俊, 战家乙. 板式换热器仿真及诊断研究[J]. 暖通空调, 2021, 51(S2): 276-279.
HE S, CHEN J, ZHAN J Y.Study on simulation and diagnosis of plate heat exchanger[J]. Heating ventilating & air conditioning, 2021, 51(S2): 276-279.
[18] 刘志巍, 焦东东, 程威栋, 等. 变频循环水泵功耗计算模型研究[J]. 汽轮机技术, 2017, 59(4): 316-318.
LIU Z W, JIAO D D, CHENG W D, et al.Research on power consumption calculation model of variable frequency circulating water pump[J]. Turbine technology, 2017, 59(4): 316-318.
[19] GB 50495—2019, 太阳能供热采暖工程技术标准[S].
GB 50495—2019,Technical standard for solar heating system:[S].
PDF(1525 KB)

Accesses

Citation

Detail

Sections
Recommended

/