STATE AWARENESS BASED ON SHARED FUZZY EQUIVALENCE RELATIONS FOR DISTRIBUTION SYSTEMS UNDER HIGH PACKET LOSS RATES

Huang Manyun, Ma Yida, Sun Guoqiang, Wei Zhinong

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (3) : 436-445.

PDF(2615 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2615 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (3) : 436-445. DOI: 10.19912/j.0254-0096.tynxb.2023-0799

STATE AWARENESS BASED ON SHARED FUZZY EQUIVALENCE RELATIONS FOR DISTRIBUTION SYSTEMS UNDER HIGH PACKET LOSS RATES

  • Huang Manyun, Ma Yida, Sun Guoqiang, Wei Zhinong
Author information +
History +

Abstract

The increasing penetration rate of distributed new energy in the distribution network and the increasing demand for real-time monitoring often result in delays, packet loss, and other phenomena in the centralized transmission of a large amount of measurement data, leading to a decrease in the accuracy of distribution network state perception and even unobservability. In response to the above issues, a state awareness method based on shared fuzzy equivalence relationships is proposes. Firstly, the collected historical measurement dataset of multi-time sections is used as the source dataset, and the real-time collected data with high measurement packet loss rate is used as the target dataset. Write two sets of datasets in the form of fuzzy sets using triangular membership functions. Then, a distance measurement method between vectors is used to calculate the fuzzy equivalence relationship matrices of two sets of fuzzy sets. On this basis, a clustering method using shared fuzzy equivalence relationships is adopted to transfer knowledge from the source dataset to the target dataset, reducing the difference in feature distribution between the two sets of datasets. Finally, a deep neural network is used to label the data corresponding to the high measurement packet loss rate in the low dimensional feature space after knowledge transfer, and the real-time status of the distribution network is obtained. Through simulation tests on IEEE standard examples and distribution network examples of a certain actual city company, the results show that the proposed distribution network state estimation method based on shared fuzzy equivalence relationship can obtain accurate real-time operation status of the distribution network under high measurement packet loss rates, and achieve real-time monitoring of the distribution network under different levels of measurement data loss.

Key words

new energy / state estimation / packet loss / deep learning / sharing fuzzy equivalence relation / clustering / knowledge transfer

Cite this article

Download Citations
Huang Manyun, Ma Yida, Sun Guoqiang, Wei Zhinong. STATE AWARENESS BASED ON SHARED FUZZY EQUIVALENCE RELATIONS FOR DISTRIBUTION SYSTEMS UNDER HIGH PACKET LOSS RATES[J]. Acta Energiae Solaris Sinica. 2024, 45(3): 436-445 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0799

References

[1] 邓佃毅, 栗文义, 楚冰清, 等. 基于可靠性约束的风-光-储微网容量优化配置对配电网可靠性影响分析[J]. 太阳能学报, 2018, 39(9): 2439-2445.
DENG D Y, LI W Y, CHU B Q, et al.Reliability analysis of wind-photovoltaic-battery microgrids optimization configuration based on reliability constraints for distribution system[J]. Acta energiae solaris sinica, 2018, 39(9): 2439-2445.
[2] 于尔铿. 电力系统状态估计[M]. 北京: 水利电力出版社, 1985.
YU E K.Power system state estimation[M]. Beijing: China Water & Power Press, 1985.
[3] 黄哲洙, 金鹏, 王洋, 等. 含光伏发电的配电网分布式状态估计方法[J]. 太阳能学报, 2021, 42(7): 167-178.
HUANG Z Z, JIN P, WANG Y, et al.Distributed state estimation for distribution network with photovoltaic power generation[J]. Acta energiae solaris sinica, 2021, 42(7): 167-178.
[4] 米阳, 李战强, 刘红业, 等. 考虑通信故障的直流微电网多储能荷电状态动态均衡策略[J]. 电网技术, 2018, 42(10): 3282-3290.
MI Y, LI Z Q, LIU H Y, et al.State-of-charge dynamic balancing strategy for multi energy storage of DC micro-grid considering communication faults[J]. Power system technology, 2018, 42(10): 3282-3290.
[5] 姚卓磊, 黄文焘, 余墨多, 等. 智能配电网电力-通信灾害故障动态协调恢复方法[J]. 电力系统自动化, 2022, 46(19): 87-94.
YAO Z L, HUANG W T, YU M D, et al.Dynamic coordination recovery method for power-communication disaster fault in smart distribution network[J]. Automation of electric power systems, 2022, 46(19): 87-94.
[6] 刘文霞, 马铁, 杨梦瑶, 等. 严重通信故障下主动配电系统分布式电源应急运行策略优化[J]. 中国电机工程学报, 2020, 40(3): 754-765.
LIU W X, MA T, YANG M Y, et al.Contingency optimization strategy for distributed generations of active distribution network under serious communication failure[J]. Proceedings of the CSEE, 2020, 40(3): 754-765.
[7] 吴在军, 徐俊俊, 余星火, 等. 主动配电网状态估计技术评述[J]. 电力系统自动化, 2017, 41(13): 182-191.
WU Z J, XU J J, YU X H, et al.Review on state estimation technique of active distribution network[J]. Automation of electric power systems, 2017, 41(13): 182-191.
[8] 孔祥玉, 张烜墉, 王成山, 等. 复杂形态下的配电网自适应自趋优状态估计方法[J]. 中国电机工程学报, 2021, 41(10): 3339-3348, 3660.
KONG X Y, ZHANG X Y, WANG C S, et al.Adaptive self-optimizing state estimation method of distribution network in complex condition[J]. Proceedings of the CSEE, 2021, 41(10): 3339-3348, 3660.
[9] 葛维春, 蔡亦浓, 李江, 等. 基于多分支电流混合量测的配电网三相状态估计[J]. 电力系统保护与控制, 2020, 48(9): 1-10.
GE W C, CAI Y N, LI J, et al.Three-phase state estimation of a distribution network based on multi-branch current mixing measurement[J]. Power system protection and control, 2020, 48(9): 1-10.
[10] 黄蔓云, 孙国强, 卫志农, 等. 基于脉冲神经网络伪量测建模的配电网三相状态估计[J]. 电力系统自动化, 2016, 40(16): 38-43, 82.
HUANG M Y, SUN G Q, WEI Z N, et al.Three-phase state estimation in distribution systems based on pseudo measurement modeling using spiking neural network[J]. Automation of electric power systems, 2016, 40(16): 38-43, 82.
[11] 孙国强, 钱嫱, 陈亮, 等. 基于深度信念网络伪量测建模的配电网状态估计[J]. 电力自动化设备, 2018, 38(12): 94-99.
SUN G Q, QIAN Q, CHEN L, et al.State estimation of distribution system based on pesudo measurement modeling using deep belief network[J]. Electric power automation equipment, 2018, 38(12): 94-99.
[12] LEJLA P, AZRA P, BALINT H, et al.The application of artificial neural networks to pseudo measurement modeling in distribution networks[C]//2021 IEEE Madrid Power Tech., Madrid, Spain, 2021: 1-6.
[13] MESTAV K R, LUENGO-ROZAS J, TONG L.Bayesian state estimation for unobservable distribution systems via deep learning[J]. IEEE transactions on power systems, 2019, 34(6): 4910-4920.
[14] 俞文帅, 张晓华, 卫志农, 等. 基于深度神经网络的电力系统快速状态估计[J]. 电网技术, 2021, 45(7): 2551-2561.
YU W S, ZHANG X H, WEI Z N, et al.Fast state estimation for power system based on deep neural network[J]. Power system technology, 2021, 45(7): 2551-2561.
[15] WENG Y, NEGI R, FALOUTSOS C, et al.Robust data-driven state estimation for smart grid[J]. IEEE transactions on smart grid, 2017, 8(4): 1956-1967.
[16] ELSAYED A A E, MOHAMED M A, ABDELRAHEEM M, et al. Optimal µPMU placement based on hybrid current channels selection for distribution grids[J]. IEEE transactions on industry applications, 2020, 56(6): 6871-6881.
[17] 孔祥玉, 王玉婷, 袁枭枭, 等. 基于定制遗传算法考虑配电网多种拓扑可观性的PMU优化配置[J]. 电力自动化设备, 2020, 40(1): 66-72.
KONG X Y, WANG Y T, YUAN X X, et al.Optimal configuration of PMU based on customized genetic algorithm and considering observability of multiple topologies of distribution network[J]. Electric power automation equipment, 2020, 40(1): 66-72.
[18] 孙亮, 杨远, 张程, 等. 分布式电源接入配电网的配电终端优化配置[J]. 太阳能学报, 2021, 42(5): 120-125.
SUN L, YANG Y, ZHANG C, et al.Distribution terminal optimal design for distributed generation accessing distribution network[J]. Acta energiae solaris sinica, 2021, 42(5): 120-125.
[19] LIU F, LU J, ZHANG G Q.Unsupervised heterogeneous domain adaptation via shared fuzzy equivalence relations[J]. IEEE transactions on fuzzy systems, 2018, 26(6): 3555-3568.
[20] 徐航, 鞠力, 董树锋, 等. 提高配电网状态估计精度的智能配电单元优化布点方法[J]. 电网技术, 2018, 42(4): 1210-1216.
XU H, JU L, DONG S F, et al.Optimization of intelligent distribution unit placement to improve accuracy of distribution network state estimation[J]. Power system technology, 2018, 42(4): 1210-1216.
[21] 刘羽霄, 张宁, 康重庆. 数据驱动的电力网络分析与优化研究综述[J]. 电力系统自动化, 2018, 42(6): 157-167.
LIU Y X, ZHANG N, KANG C Q.A review on data-driven analysis and optimization of power grid[J]. Automation of electric power systems, 2018, 42(6): 157-167.
[22] 蔡昌春, 息梦蕊, 刘昊林, 等. 基于数据驱动和多场景技术的微电网并网等效建模[J]. 电力自动化设备, 2022, 42(9): 64-69.
CAI C C, XI M R, LIU H L, et al.Grid-connected equivalent modeling of microgrids based on data-driven and multi-scenario technologies[J]. Electric power automation equipment, 2022, 42(9): 64-69.
[23] 黄蔓云, 卫志农, 孙国强, 等. 数据挖掘在配电网态势感知中的应用:模型、算法和挑战[J]. 中国电机工程学报, 2022, 42(18): 6588-6599.
HUANG M Y, WEI Z N, SUN G Q, et al.Review of distribution system situation awareness based on data mining: modeling, algorithms and challenges[J]. Proceedings of the CSEE, 2022, 42(18): 6588-6599.
PDF(2615 KB)

Accesses

Citation

Detail

Sections
Recommended

/