COORDINATED CONTROL OF HYBRID ENERGY STORAGE BASED ON ENHANCED ACTIVE DISTURBANCE REJECTION CONTROL

Tao Long, Ma Xiaoyong, Wang Yifeng, Liang Ningyi, Wang Zhongda, Sun Mingpeng

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (9) : 668-677.

PDF(2906 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2906 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (9) : 668-677. DOI: 10.19912/j.0254-0096.tynxb.2023-0808

COORDINATED CONTROL OF HYBRID ENERGY STORAGE BASED ON ENHANCED ACTIVE DISTURBANCE REJECTION CONTROL

  • Tao Long, Ma Xiaoyong, Wang Yifeng, Liang Ningyi, Wang Zhongda, Sun Mingpeng
Author information +
History +

Abstract

It is difficult to realize the ideal dynamic of microgrid under complex disturbance. Based on the frequency division framework and linear active disturbance rejection (LADRC) theory, a hybrid energy storage enhanced active disturbance rejection coordinated control strategy is proposed in this paper. In this scheme, a cascade linear extended state observer (LESO) is introduced into the outer loop to output an ideal wave suppression instruction and improve the immunity. At the same time, the reference differential feedforward is introduced into the auto-disturbance rejection control law of the inner loop to optimize the tracking ability of the output instructions of the outer loop and improve the dynamic performance. Based on the theoretical analysis, the advantages of the enhanced active disturbance rejection coordination control are analyzed from the aspects of disturbance observation accuracy, reference tracking error and disturbance attenuation, and the guiding ideology is provided for parameter tuning. Finally, the performance of the proposed strategy is tested on the semi-physical simulation platform to verify its feasibility and effectiveness.

Key words

microgrids / energy storage / disturbance rejection / frequency division frame / cascaded linear extended state observer / reference differential feedforward

Cite this article

Download Citations
Tao Long, Ma Xiaoyong, Wang Yifeng, Liang Ningyi, Wang Zhongda, Sun Mingpeng. COORDINATED CONTROL OF HYBRID ENERGY STORAGE BASED ON ENHANCED ACTIVE DISTURBANCE REJECTION CONTROL[J]. Acta Energiae Solaris Sinica. 2024, 45(9): 668-677 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0808

References

[1] LIAN J J, ZHANG Y S, MA C, et al.A review on recent sizing methodologies of hybrid renewable energy systems[J]. Energy conversion and management, 2019, 199: 112027.
[2] DOS SANTOS NETO P J, DOS SANTOS BARROS T A, SILVEIRA J P C, et al. Power management strategy based on virtual inertia for DC microgrids[J]. IEEE transactions on power electronics, 2020, 35(11): 12472-12485.
[3] 胡博, 谢开贵, 邵常政, 等. 双碳目标下新型电力系统风险评述:特征、指标及评估方法[J]. 电力系统自动化, 2023, 47(5): 1-15.
HU B, XIE K G, SHAO C Z, et al.Commentary on risk of new power system under goals of carbon emission peak and carbon neutrality: characteristics, indices and assessment methods[J]. Automation of electric power systems, 2023, 47(5): 1-15.
[4] 赵冬梅, 徐辰宇, 陶然, 等. 多元分布式储能在新型电力系统配电侧的灵活调控研究综述[J]. 中国电机工程学报, 2023, 43(5): 1776-1798, 9.
ZHAO D M, XU C Y, TAO R, et al.Review on flexible regulation of multiple distributed energy storage in distribution side of new power system[J]. Proceedings of the CSEE, 2023, 43(5): 1776-1798, 9.
[5] 蒋玮, 薛帅. 不对称链式HESS混合载波PWM调制技术研究[J]. 中国电机工程学报, 2020, 40(13): 4266-4277.
JIANG W, XUE S.A hybrid carrier PWM method for asymmetric cascaded hybrid energy storage system[J]. Proceedings of the CSEE, 2020, 40(13): 4266-4277.
[6] LEÓN L M, ROMERO-QUETE D, MERCHÁN N, et al. Optimal design of PV and hybrid storage based microgrids for healthcare and government facilities connected to highly intermittent utility grids[J]. Applied energy, 2023, 335: 120709.
[7] 李聪, 秦立军. 基于改进粒子群算法的混合储能独立调频的容量优化研究[J]. 太阳能学报, 2023, 44(1): 426-434.
LI C, QIN L J.Sizing optimization for hybrid energy storage system independently participating in regulation market using improved particle swarm optimization[J]. Acta energiae solaris sinica, 2023, 44(1): 426-434.
[8] 李武华, 徐驰, 禹红斌, 等. 直流微网系统中混合储能分频协调控制策略[J]. 电工技术学报, 2016, 31(14): 84-92.
LI W H, XU C, YU H B, et al.Frequency dividing coordinated control strategy for hybrid energy storage system of DC micro-grid[J]. Transactions of China Electrotechnical Society, 2016, 31(14): 84-92.
[9] 杨帆, 田雷, 李浩, 等. 基于混合储能的直流母线电压有限时间无源控制方法[J]. 太阳能学报, 2019, 40(4): 1042-1049.
YANG F, TIAN L, LI H, et al.Finite-time passivity-based control method for dc-bus voltage based on hybrid energy storage system[J]. Acta energiae solaris sinica, 2019, 40(4): 1042-1049.
[10] RAZA A, AZEEM M K, NAZIR M S, et al.Robust nonlinear control of regenerative fuel cell, supercapacitor, battery and wind based direct current microgrid[J]. Journal of energy storage, 2023, 64: 107158.
[11] TAO L, WANG P, MA X Y, et al.Robustness optimization through modified linear active disturbance rejection control for high-voltage load interface in microgrid[J]. IEEE transactions on industrial electronics, 2023, 70(4): 3909-3919.
[12] SARTIPIZADEH H, HARIRCHI F.Robust model predictive control of DC-DC floating interleaved boost converter under uncertainty[C]//2017 Ninth Annual IEEE Green Technologies Conference (GreenTech). Denver, CO, USA, 2017: 320-327.
[13] NARASIMHULU N, KRISHNAM NAIDU R S R, FALKOWSKI-GILSKI P, et al. Energy management for PV powered hybrid storage system in electric vehicles using artificial neural network and Aquila optimizer algorithm[J]. Energies, 2022, 15(22): 8540.
[14] 王福忠, 陶新坤, 田广强. 基于改进果蝇算法优化的微电网逆变器恒功率控制算法[J]. 电力系统保护与控制, 2021, 49(21): 71-79.
WANG F Z, TAO X K, TIAN G Q.Constant power control algorithm for a microgrid inverter based on an improved fruit fly algorithm[J]. Power system protection and control, 2021, 49(21): 71-79.
[15] HAN J Q.From PID to active disturbance rejection control[J]. IEEE transactions on industrial electronics, 2009, 56(3): 900-906.
[16] SIRA-RAMIREZ H, OLIVER-SALAZAR M A. On the robust control of buck-converter DC-motor combinations[J]. IEEE transactions on power electronics, 2013, 28(8): 3912-3922.
[17] GAO Z Q.Scaling and bandwidth-parameterization based controller tuning[C]//Proceedings of the 2003 American Control Conference. Denver, CO, USA, 2003: 4989-4996.
[18] 陶珑, 王萍, 王议锋, 等. 微电网低压接口变换器的参数寻优自抗扰控制[J]. 电工技术学报, 2022, 37(16): 4202-4211.
TAO L, WANG P, WANG Y F, et al.Active disturbance rejection control with automatic optimization for low-voltage interface converter in microgrid[J]. Transactions of China Electrotechnical Society, 2022, 37(16): 4202-4211.
[19] 李强, 方一鸣, 李建雄, 等. 伺服电机驱动的连铸结晶器振动位移系统自抗扰控制[J]. 电机与控制学报, 2020, 24(3): 147-156.
LI Q, FANG Y M, LI J X, et al.Active disturbance rejection control for vibration displacement system of continuous casting mold driven by servo motor[J]. Electric machines and control, 2020, 24(3): 147-156.
[20] 祝可可, 阮琳. 计及变流器影响的直驱式永磁同步发电机二阶自抗扰控制[J]. 太阳能学报, 2023, 44(2): 87-92.
ZHU K K, RUAN L.Second-order active disturbance rejection control of direct-driven permanent magnet synchronous generators considering influence of converter[J]. Acta energiae solaris sinica, 2023, 44(2): 87-92.
[21] 颜湘武, 常文斐, 崔森, 等. 基于线性自抗扰控制的静止无功补偿器抑制弱交流风电系统次同步振荡策略[J]. 电工技术学报, 2022, 37(11): 2825-2836.
YAN X W, CHANG W F, CUI S, et al.Sub-synchronous oscillation suppression strategy of weak AC wind power system with static var compensator based on linear active disturbance rejection control[J]. Transactions of China Electrotechnical Society, 2022, 37(11): 2825-2836.
[22] 周雪松, 刘伟, 马幼捷, 等. 基于LADRC的三相四线制并联型有源电力滤波器系统分析[J]. 高电压技术, 2016, 42(4): 1290-1299.
ZHOU X S, LIU W, MA Y J, et al.Analysis of three-phase four-wire shunt active power filter system based on LADRC[J]. High voltage engineering, 2016, 42(4): 1290-1299.
[23] 马幼捷, 张超, 周雪松. 基于自抗扰的混合储能系统控制策略[J]. 电源技术, 2023, 47(1): 122-126.
MA Y J, ZHANG C, ZHOU X S.Control strategy of hybrid energy storage system based on active disturbance rejection[J]. Chinese journal of power sources, 2023, 47(1): 122-126.
PDF(2906 KB)

Accesses

Citation

Detail

Sections
Recommended

/