EXTREME VALUE ESTIMATION OF STRUCTURAL RESPONSE FOR 15 MW SEMI-SUBMERSIBLE OFFSHORE WIND TURBINE

Cao Linyang, He Lin, Chai Wei, Shi Wei, Zhang Lixian, Qu Xiaoqi

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (9) : 534-542.

PDF(2027 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2027 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (9) : 534-542. DOI: 10.19912/j.0254-0096.tynxb.2023-0816

EXTREME VALUE ESTIMATION OF STRUCTURAL RESPONSE FOR 15 MW SEMI-SUBMERSIBLE OFFSHORE WIND TURBINE

  • Cao Linyang1,2, He Lin2, Chai Wei1,2, Shi Wei3, Zhang Lixian3, Qu Xiaoqi4
Author information +
History +

Abstract

To ensure the normal operation and structural safety of large-scale floating wind turbines under extreme sea conditions, extreme value estimation of structural responses is necessary to be carried out to assess the safety of structures. In this work, the OpenFast software was used to perform numerical simulations of the structural response of a 15 MW large-scale floating wind turbine in the South China Sea under a 50-year return period sea state. Combining with the Poisson approximation assumption, the average crossing rate method was employed to estimate the extreme distribution of tower base shear and bending moment for the large-scale floating wind turbine. The results show that under extreme conditions, the tower base shear force and bending moment will be significantly excited near the natural frequency of the tower's pitch motion, leading to a sharp increment of the dynamics responses. Moreover, the average upcrossing method can effectively estimate the extreme value distribution of the tower base structural response for a 15 MW floating wind turbine. Under an exceedance probability of 0.01, the estimated extreme values of tower base shear and bending moment based on 1-hour numerical simulation response samples satisfied the structural strength requirements.

Key words

offshore wind turbines / semisubmersible / reliability analysis / extreme value estimation / average upcrossing rate method

Cite this article

Download Citations
Cao Linyang, He Lin, Chai Wei, Shi Wei, Zhang Lixian, Qu Xiaoqi. EXTREME VALUE ESTIMATION OF STRUCTURAL RESPONSE FOR 15 MW SEMI-SUBMERSIBLE OFFSHORE WIND TURBINE[J]. Acta Energiae Solaris Sinica. 2024, 45(9): 534-542 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0816

References

[1] 张礼贤, 施伟, 李昕, 等. 风冰联合作用下大型单桩海上风电机组动力特性[J]. 太阳能学报, 2023, 44(2): 59-66.
ZHANG L X, SHI W, LI X, et al.Dynamic characteristics of large monopile offshore wind turbine under wind-ice interaction[J]. Acta energiae solaris sinica, 2023, 44(2): 59-66.
[2] 李蜀军, 刘青松, 李春, 等. 极端海况下附配重系泊漂浮式风力机响应分析[J]. 太阳能学报, 2022, 43(12): 415-422.
LI S J, LIU Q S, LI C, et al.Response analysis of floating wind turbine with counterweight mooring under extreme sea conditions[J]. Acta energiae solaris sinica, 2022, 43(12): 415-422.
[3] 何林, 柴威, 杨龙霞, 等. 非线性波浪载荷下自升式平台动力响应极值预报[J]. 中国造船, 2022, 63(5): 82-91.
HE L, CHAI W, YANG L X, et al.Extreme value analysis of dynamic response of jack-up platform to nonlinear wave load[J]. Shipbuilding of China, 2022, 63(5): 82-91.
[4] JENSEN J J, OLSEN A S, MANSOUR A E.Extreme wave and wind response predictions[J]. Ocean engineering, 2011, 38(17/18): 2244-2253.
[5] LEE C F, CHENG Z S, ONG M C, et al.Extreme response analysis of a floating vertical axis wind turbine based on modified environmental contour method[J]. Ocean engineering, 2023, 270: 113459.
[6] IEC 61400-3, Wind turbines part 3: design requirements for offshore wind turbines[S].
[7] LI L, CHENG Z S, YUAN Z M, et al.Short-term extreme response and fatigue damage of an integrated offshore renewable energy system[J]. Renewable energy, 2018, 126: 617-629.
[8] SULTANIA A, MANUEL L.Reliability analysis for a spar-supported floating offshore wind turbine[J]. Wind engineering, 2018, 42(1): 51-65.
[9] CAO Y K, ZAVALA V M, D'AMATO F. Using stochastic programming and statistical extrapolation to mitigate long-term extreme loads in wind turbines[J]. Applied energy, 2018, 230: 1230-1241.
[10] LOTT S, CHENG P W.Load extrapolations based on measurements from an offshore wind turbine at alpha ventus[J]. Journal of physics: conference series, 2016, 753: 072004.
[11] 李志昊, 岳敏楠, 闫阳天, 等. 不同海况下近海超大型风力机动力学响应及结构损伤分析[J]. 太阳能学报, 2022, 43(7): 366-374.
LI Z H, YUE M N, YAN Y T, et al.Analysis of dynamic response and structural damage of offshore super large wind turbine under different sea conditions[J]. Acta energiae solaris sinica, 2022, 43(7): 366-374.
[12] CHAI W, NAESS A, LEIRA B J, et al.Efficient Monte Carlo simulation and Grim effective wave model for predicting the extreme response of a vessel rolling in random head seas[J]. Ocean engineering, 2016, 123: 191-203.
[13] NAESS A, GAIDAI O, HAVER S.Efficient estimation of extreme response of drag-dominated offshore structures by Monte Carlo simulation[J]. Ocean engineering, 2007, 34(16): 2188-2197.
[14] 中国船级社. 海上风力发电机组认证指南[S].
China Classification Society.Guidelines for certification of offshore wind turbine units[S].
[15] DNV-OS-J101, Design of offshore wind turbine structures[S]. Høvik: Det Norske Veritas, 2013.
[16] GAERTNER E, RINKER J, SETHURAMAN L, et al.IEA wind TCP task 37: definition of the IEA 15-megawatt offshore reference wind turbine[R]. 2020.
[17] 易乾. 南海海域风浪条件下浮式风机动力响应及构型参数研究[D]. 北京: 清华大学, 2017.
YI Q.Study on the power response and configuration parameters of floating wind turbine under wind and wave conditions in the South China Sea[D]. Beijing: Tsinghua University, 2017.
[18] KIM T, NATARAJAN A, LOVERA A, et al.A comprehensive code-to-code comparison study with the modified IEA15 MW-UMaine Floating Wind Turbine for H2020 HIPERWIND project[J]. Journal of physics: conference series, 2022, 2265(4): 042006.
PDF(2027 KB)

Accesses

Citation

Detail

Sections
Recommended

/