COORDINATED OPTIMIZATION STRATEGY OF STACKELBERG GAME FOR INTEGRATED ENERGY SYSTEMS CONSIDERING THERMAL INERTIA OF BUILDINGS

Han Li, Yu Hongbo, Wang Chong, Yu Xiaojiao, Wang Xiaojing

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (9) : 197-209.

PDF(1441 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1441 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (9) : 197-209. DOI: 10.19912/j.0254-0096.tynxb.2023-0817

COORDINATED OPTIMIZATION STRATEGY OF STACKELBERG GAME FOR INTEGRATED ENERGY SYSTEMS CONSIDERING THERMAL INERTIA OF BUILDINGS

  • Han Li, Yu Hongbo, Wang Chong, Yu Xiaojiao, Wang Xiaojing
Author information +
History +

Abstract

The paper proposes a coordinated optimization strategy of Stackelberg game for integrated energy systems considering the thermal inertia of buildings from the users' perspective. First, the heat network characteristics model and the thermal inertia model of buildings are established, and the mathematical model of the Stackelberg game with the microgrid operator as the leader and the users as the follower is constructed. When the photovoltaic output is high, users convert electricity into heat through electric heating equipment and store the heat energy by using the thermal inertia of buildings, so that they do not need to sell all the surplus photovoltaic power to the microgrid operator, which enhances the rights and interests of users and effectively avoids a large amount of surplus photovoltaic power to be connected to the grid and relieves pressure on surplus power to connect to the grid. Secondly, the pricing and quantitative model between the microgrid operator and the users is established, and the existence and uniqueness of the Stackelberg equilibrium solution are proved, taking into account the users' satisfaction with energy use and temperature comfort. Finally, the effectiveness of the proposed strategy is verified by an practical example, which greatly enhances users'rights and interests while avoiding a large amount of surplus photovoltaic power from users to connect to the external grid.

Key words

thermal inertia of buildings / game theory / photovoltaic power / user rights / integrated energy system / coordinated optimization

Cite this article

Download Citations
Han Li, Yu Hongbo, Wang Chong, Yu Xiaojiao, Wang Xiaojing. COORDINATED OPTIMIZATION STRATEGY OF STACKELBERG GAME FOR INTEGRATED ENERGY SYSTEMS CONSIDERING THERMAL INERTIA OF BUILDINGS[J]. Acta Energiae Solaris Sinica. 2024, 45(9): 197-209 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0817

References

[1] 赵银波, 高红均, 王仲, 等. 考虑用户电能替代的商业园区运营商多能交易博弈优化决策[J]. 电网技术, 2021, 45(4): 1320-1329.
ZHAO Y B, GAO H J, WANG Z, et al.Optimal decision of multi-energy trading game for commercial park operators considering user-side electricity substitution[J]. Power system technology, 2021, 45(4): 1320-1329.
[2] 刘艳峰, 刘正学, 罗西, 等. 基于柔性负荷的孤立多能互补建筑能源系统优化设计[J]. 太阳能学报, 2022, 43(6): 24-32.
LIU Y F, LIU Z X, LUO X, et al.Design of isolated multi-energy complementary building energy system based on flexible load[J]. Acta energiae solaris sinica, 2022, 43(6): 24-32.
[3] 刘晓峰, 高丙团, 李扬. 博弈论在电力需求侧的应用研究综述[J]. 电网技术, 2018, 42(8): 2704-2711.
LIU X F, GAO B T, LI Y.Review on application of game theory in power demand side[J]. Power system technology, 2018, 42(8): 2704-2711.
[4] 杨丽君, 李慧翔, 吕雪姣, 等. 多电-热综合能源微网的热能分级分时利用市场交易策略[J]. 中国电机工程学报, 2021, 41(23): 8046-8057.
YANG L J, LI H X, LYU X J, et al.Market trading strategy of thermal hierarchical time sharing utilization in multi electric-thermal integrated energy microgrid[J]. Proceedings of the CSEE, 2021, 41(23): 8046-8057.
[5] 刘文霞, 姚齐, 王月汉, 等. 基于阶梯型需求响应机制的供需主从博弈电源规划模型[J]. 电力系统自动化, 2022, 46(20): 54-63.
LIU W X, YAO Q, WANG Y H, et al.Generation planning model of stackelberg game between supply and demand based on stepped demand response mechanism[J]. Automation of electric power systems, 2022, 46(20): 54-63.
[6] 陈修鹏, 李庚银, 夏勇. 基于主从博弈的新型城镇配电系统产消者竞价策略[J]. 电力系统自动化, 2019, 43(14): 97-104.
CHEN X P, LI G Y, XIA Y.Stackelberg game based bidding strategy for prosumers in new urban distribution system[J]. Automation of electric power systems, 2019, 43(14): 97-104.
[7] 方燕琼, 甘霖, 艾芊, 等. 基于主从博弈的虚拟电厂双层竞标策略[J]. 电力系统自动化, 2017, 41(14): 61-69.
FANG Y Q, GAN L, AI Q, et al.Stackelberg game based Bi-level bidding strategy for virtual power plant[J]. Automation of electric power systems, 2017, 41(14): 61-69.
[8] 王程, 刘念, 成敏杨, 等. 基于Stackelberg博弈的光伏用户群优化定价模型[J]. 电力系统自动化, 2017, 41(12): 146-153.
WANG C, LIU N, CHENG M Y, et al.Stackelberg game based optimal pricing model for photovoltaic prosumer cluster[J]. Automation of electric power systems, 2017, 41(12): 146-153.
[9] 李鹏, 袁智勇, 于力, 等. 考虑居民舒适度的户用光伏集群优化定价模型[J]. 太阳能学报, 2021, 42(11): 59-66.
LI P, YUAN Z Y, YU L, et al.Optimal pricing model for PV prosumer cluster considering user satisfaction[J]. Acta energiae solaris sinica, 2021, 42(11): 59-66.
[10] 贾龙, 胡泽春, 宋永华, 等. 储能和电动汽车充电站与配电网的联合规划研究[J]. 中国电机工程学报, 2017, 37(1): 73-84.
JIA L, HU Z C, SONG Y H, et al.Joint planning of distribution networks with distributed energy storage systems and electric vehicle charging stations[J]. Proceedings of the CSEE, 2017, 37(1): 73-84.
[11] 赵团团, 邬昌军, 巩晓赟. 基于最优滚动控制域的储能控制策略[J]. 太阳能学报, 2023, 44(2): 247-253.
ZHAO T T, WU C J, GONG X Y.Energy storage control strategy based on optimal rolling control domain[J]. Acta energiae solaris sinica, 2023, 44(2): 247-253.
[12] 李鹏, 吴迪凡, 李雨薇, 等. 基于综合需求响应和主从博弈的多微网综合能源系统优化调度策略[J]. 中国电机工程学报, 2021, 41(4): 1307-1321.
LI P, WU D F, LI Y W, et al.Optimal dispatch of multi-microgrids integrated energy system based on integrated demand response and stackelberg game[J]. Proceedings of the CSEE, 2021, 41(4): 1307-1321.
[13] 闫东翔, 陈玥. 共享储能商业模式和定价机制研究综述[J]. 电力系统自动化, 2022, 46(23): 178-191.
YAN D X, CHEN Y.Review on business model and pricing mechanism for shared energy storage[J]. Automation of electric power systems, 2022, 46(23): 178-191.
[14] 吴智泉, 贾纯超, 陈磊, 等. 新型电力系统中储能创新方向研究[J]. 太阳能学报, 2021, 42(10): 444-451.
WU Z Q, JIA C C, CHEN L, et al.Research on innovative direction of energy storage in new power system construction[J]. Acta energiae solaris sinica, 2021, 42(10): 444-451.
[15] GU W, WANG J, LU S, et al.Optimal operation for integrated energy system considering thermal inertia of district heating network and buildings[J]. Applied energy, 2017, 199: 234-246.
[16] DAI Y H, CHEN L, MIN Y, et al.Dispatch model for CHP with pipeline and building thermal energy storage considering heat transfer process[J]. IEEE transactions on sustainable energy, 2019, 10(1): 192-203.
[17] 李平, 赵适宜, 金世军, 等. 基于热网与建筑物储热解耦的调峰能力提升方案[J]. 电力系统自动化, 2018, 42(13): 20-28, 42.
LI P, ZHAO S Y, JIN S J, et al.Promotion method of peak regulation capacity by power and heat decoupling based on heat storage of district heating network and buildings[J]. Automation of electric power systems, 2018, 42(13): 20-28, 42.
[18] 林俐, 顾嘉, 王铃. 面向风电消纳的考虑热网特性及热舒适度弹性的电热联合优化调度[J]. 电网技术, 2019, 43(10): 3648-3655.
LIN L, GU J, WANG L.Optimal dispatching of combined heat-power system considering characteristics of thermal network and thermal comfort elasticity for wind power accommodation[J]. Power system technology, 2019, 43(10): 3648-3655.
[19] 仪忠凯, 李志民. 计及热网储热和供热区域热惯性的热电联合调度策略[J]. 电网技术, 2018, 42(5): 1378-1384.
YI Z K, LI Z M.Combined heat and power dispatching strategy considering heat storage characteristics of heating network and thermal inertia in heating area[J]. Power system technology, 2018, 42(5): 1378-1384.
[20] WU C Y, GU W, JIANG P, et al.Combined economic dispatch considering the time-delay of district heating network and multi-regional indoor temperature control[J]. IEEE transactions on sustainable energy, 2018, 9(1): 118-127.
[21] WU C Y, GU W, XU Y L, et al.Bi-level optimization model for integrated energy system considering the thermal comfort of heat customers[J]. Applied energy, 2018, 232: 607-616.
[22] 陈厚合, 吴桐, 李本新, 等. 考虑建筑热惯性的园区代理商电价策略及用能优化[J]. 电力系统自动化, 2021, 45(3): 148-156.
CHEN H H, WU T, LI B X, et al.Electricity pricing strategy of park retailer and energy optimization considering thermal inertia of building[J]. Automation of electric power systems, 2021, 45(3): 148-156.
[23] 帅轩越, 马志程, 王秀丽, 等. 基于主从博弈理论的共享储能与综合能源微网优化运行研究[J]. 电网技术, 2023, 47(2): 679-687, 57-59.
SHUAI X Y, MA Z C, WANG X L, et al. Optimal operation of shared energy storage and integrated energy microgrid based on leader-follower game theory[J]. Power system technology, 2023, 47(2): 679-687, 57-59.
[24] MAHARJAN S, ZHU Q Y, ZHANG Y, et al.Dependable demand response management in the smart grid: a stackelberg game approach[J]. IEEE transactions on smart grid, 2013, 4(1): 120-132.
[25] WEI F, JING Z X, WU P Z, et al.A Stackelberg game approach for multiple energies trading in integrated energy systems[J]. Applied energy, 2017, 200: 315-329.
[26] 顾欣, 王琦, 胡云龙, 等. 基于纳什议价的多微网综合能源系统分布式低碳优化运行策略[J]. 电网技术, 2022, 46(4): 1464-1475, 32-38.
GU X, WANG Q, HU Y L, et al. Distributed low-carbon optimal operation strategy of multi-microgrids integrated energy system based on Nash bargaining[J]. Power system technology, 2022, 46(4): 1464-1475, 32-38.
[27] 王海洋, 李珂, 张承慧, 等. 基于主从博弈的社区综合能源系统分布式协同优化运行策略[J]. 中国电机工程学报, 2020, 40(17): 5435-5444, 4.
WANG H Y, LI K, ZHANG C H, et al.Distributed coordinative optimal operation of community integrated energy system based on stackelberg game[J]. Proceedings of the CSEE, 2020, 40(17): 5435-5444, 4.
[28] 崔杨, 姜涛, 仲悟之, 等. 考虑风电消纳的区域综合能源系统源荷协调经济调度[J]. 电网技术, 2020, 44(7): 2474-2482, 11.
CUI Y, JIANG T, ZHONG W Z, et al.Source-load coordination economic dispatch method for regional integrated energy system considering wind power accommodation[J]. Power system technology, 2020, 44(7): 2474-2482, 11.
[29] 张也, 唐智洪, 刘荣, 等. 分布式能源热网储能量化计算分析[J]. 中国电机工程学报, 2021, 41(3): 900-907, 10.
ZHANG Y, TANG Z H, LIU R, et al.Calculation and analysis of energy storage in heat supply nets of distributed energy[J]. Proceedings of the CSEE, 2021, 41(3): 900-907, 10.
[30] DUQUETTE J, ROWE A, WILD P.Thermal performance of a steady state physical pipe model for simulating district heating grids with variable flow[J]. Applied energy, 2016, 178: 383-393.
PDF(1441 KB)

Accesses

Citation

Detail

Sections
Recommended

/