OVERVIEW OF RESEARCH ON HYDROGEN FUEL CELL RAIL VEHICLES BASED ON HYBRID POWER

Wang Kewen, Zhang Xiaoping, Zhou Houqing, Yang Chunhua

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (9) : 50-59.

PDF(1303 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1303 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (9) : 50-59. DOI: 10.19912/j.0254-0096.tynxb.2023-0824

OVERVIEW OF RESEARCH ON HYDROGEN FUEL CELL RAIL VEHICLES BASED ON HYBRID POWER

  • Wang Kewen1,2, Zhang Xiaoping3, Zhou Houqing4, Yang Chunhua4
Author information +
History +

Abstract

Hydrogen fuel cell rail vehicle is a new type of rail vehicle powered by hydrogen as fuel. Its characteristics of zero emission, low noise, and high efficiency have significant social and economic benefits, and it is also one of the important ways for rail transportation to save energy and reduce emissions. This paper expounds the working principle and system composition of hydrogen fuel cells, as well as the research and development progress and trends of hydrogen fuel cell systems. Systematically combs the research and application status of hydrogen fuel cell rail vehicles at home and abroad, mainly summarizes the differences in terms of vehicle type, fuel cell power, battery life, maximum operating speed, power mode, hydrogen storage capacity and pressure, and analyzes the output characteristics of hydrogen fuel cell hybrid power mode and power matching in various environments , confirming that the hybrid power system formed by hydrogen fuel cells and power batteries/super capacitors can better adapt to various working conditions such as start-stop, idling, continuous high speed and climbing of rail vehicles. Finally, the research difficulties of hydrogen fuel cells, the storage and transportation challenges of hydrogen, and the development potential of hydrogen fuel cell hybrid power in rail vehicles are discussed.

Key words

hydrogen fuel cell / rail vehicle / hybrid power / research status / discussion on application

Cite this article

Download Citations
Wang Kewen, Zhang Xiaoping, Zhou Houqing, Yang Chunhua. OVERVIEW OF RESEARCH ON HYDROGEN FUEL CELL RAIL VEHICLES BASED ON HYBRID POWER[J]. Acta Energiae Solaris Sinica. 2024, 45(9): 50-59 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0824

References

[1] 中国铁道科学研究院集团有限公司. 城市轨道交通2022年上半年数据统计和分析[J]. 现代城市轨道交通, 2022(7): 116.
China Academy of Railway Sciences Group Co., Ltd. Statistics and analysis of urban rail transit data in the first half of2022[J]. Modern urban transit, 2022(7): 116.
[2] 侯健, 杨铮, 贺婷, 等. 质子交换膜燃料电池热管理问题的研究进展[J]. 中南大学学报(自然科学版), 2021, 52(1): 19-30.
HOU J, YANG Z, HE T, et al.Research progress on thermal management of proton exchange membrane fuel cells[J]. Journal of Central South University (science and technology), 2021, 52(1): 19-30.
[3] 周新军. 铁路利用新能源和可再生能源潜力分析[J]. 中外能源, 2016, 21(5): 29-34.
ZHOU X J.A study on potential for using new energy and renewable energy sources in railways[J]. Sino-global energy, 2016, 21(5): 29-34.
[4] SHARAF O Z, ORHAN M F.An overview of fuel cell SHARAF O Z, ORHAN M F. An overview of fuel cell technology: fundamentals and applications[J]. Renewable and sustainable energy reviews, 2014, 32: 810-853.
[5] TANÇ B, ARAT H T, BALTACıOĞLU E, et al. Overview of the next quarter century vision of hydrogen fuel cell electric vehicles[J]. International journal of hydrogen energy, 2019, 44(20): 10120-10128.
[6] 陈维荣, 卜庆元, 刘志祥, 等. 燃料电池混合动力有轨电车动力系统设计[J]. 西南交通大学学报, 2016, 51(3): 430-436.
CHEN W R, BU Q Y, LIU Z X, et al.Power system design for a fuel cell hybrid power tram[J]. Journal of Southwest Jiaotong University, 2016, 51(3): 430-436.
[7] 赵冬冬, 赵国胜, 夏磊, 等. 无人机用燃料电池阴极供气系统建模与控制[J]. 航空学报, 2021, 42(7): 496-512.
ZHAO D D, ZHAO G S, XIA L, et al.Modeling and control of fuel cell cathode gas supply system for UAV[J]. Acta aeronautica et astronautica sinica, 2021, 42(7): 496-512.
[8] 马冰心, 王永富. PEMFC系统过氧比的自适应高阶滑模控制[J]. 控制理论与应用, 2020, 37(2): 253-264.
MA B X, WANG Y F.Adaptive high-order sliding mode control for oxygen excess ratio of PEMFC system[J]. Control theory & applications, 2020, 37(2): 253-264.
[9] SUN L, SHEN J, HUA Q S, et al.Data-driven oxygen excess ratio control for proton exchange membrane fuel cell[J]. Applied energy, 2018, 231: 866-875.
[10] SHOKUHI-RAD A, JAMALI A, NAGHASHZADEGAN M, et al.Optimum Pareto design of non-linear predictive control with multi-design variables for PEM fuel cell[J]. International journal of hydrogen energy, 2012, 37(15): 11244-11254.
[11] 张炳力, 代康伟, 赵韩, 等. 基于随机动态规划的燃料电池城市客车能量管理策略优化[J]. 系统仿真学报, 2008, 20(17): 4664-4667.
ZHANG B L, DAI K W, ZHAO H, et al.Optimized energy management strategy for fuel cell city bus based on stochastic dynamic programming[J]. Journal of system simulation, 2008, 20(17): 4664-4667.
[12] RURGLADDAPAN J, UTHAICHANA K, KAEWKHAM-AI B.Li-ion battery sizing and dynamic programming for optimal power-split control in a hybrid electric vehicle[C]//2012 9th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology. Phetchaburi, Thailand, 2012: 1-5.
[13] XU L F, OUYANG M G, LI J Q, et al.Dynamic programming algorithm for minimizing operating cost of a PEM fuel cell vehicle[C]//2012 IEEE International Symposium on Industrial Electronics. Hangzhou, China, 2012: 1490-1495.
[14] SUN Y, ANWAR M, HASSAN N M S, et al. A review of hydrogen technologies and engineering solutions for railway vehicle design and operations[J]. Railway engineering science, 2021, 29(3): 212-232.
[15] 汪培桢, 杨升. 氢能有轨电车应用综述[J]. 装备制造技术, 2020(2): 196-199.
WANG P Z, YANG S.Overview of hydrogen power tram applications[J]. Equipment manufacturing technology, 2020(2): 196-199.
[16] 黄文强. 氢燃料电池混合动力有轨电车运行能效提升方法研究[D]. 成都: 西南交通大学, 2020.
HUANG W Q.Study on the method of improving the energy efficiency of hydrogen fuel cell hybrid tram[D].Chengdu: Southwest Jiaotong University, 2020.
[17] 曹楠. 车载燃料电池混合动力系统设计与能量管理[D]. 成都: 西南交通大学, 2017.
CAO N.Design and energy management of vehicle fuel cell hybrid power system[D]. Chengdu: Southwest Jiaotong University, 2017.
[18] 彭飞. 基于PEMFC的现代有轨电车混合动力系统关键技术研究[D]. 成都: 西南交通大学, 2014.
PENG F.Research on critical technologies about hybrid power system of modern tram based on PEMFC[D]. Chengdu: Southwest Jiaotong University, 2014.
[19] 马睿, 党翰斌, 张钰奇, 等. 质子交换膜燃料电池系统故障机理分析及诊断方法研究综述[J]. 中国电机工程学报, 2024, 44(1): 407-427.
MA R, DANG H B, ZHANG Y Q, et al.A review on failure mechanism analysis and diagnosis for proton exchange membrane fuel cell systems[J]. Proceedings of the CSEE, 2024, 44(1): 407-427.
[20] 陈维荣, 朱亚男, 李奇, 等. 轨道交通用多堆燃料电池发电系统拓扑及系统控制与检测方法综述及展望[J]. 中国电机工程学报, 2018, 38(23): 6967-6980, 7130.
CHEN W R, ZHU Y N, LI Q, et al.Review and prospect of structures, control and detection schemes of multi-stack fuel cell power generation system used in rail traffic[J]. Proceedings of the CSEE, 2018, 38(23): 6967-6980, 7130.
[21] 周苏, 王克勇, 文泽军, 等. 车用多堆燃料电池系统能量管理与控制策略[J]. 同济大学学报(自然科学版), 2021, 49(1): 107-115.
ZHOU S, WANG K Y, WEN Z J, et al.Energy management and control strategy of multi-stack fuel cell system for automotive applications[J]. Journal of Tongji University (natural science), 2021, 49(1): 107-115.
[22] 李萌. 质子交换膜燃料电池建模与参数预测研究[D]. 大连: 大连理工大学, 2020.
LI M.Modeling and parameter prediction of proton exchange membrane fuel cell[D]. Dalian: Dalian University of Technology, 2020.
[23] HERR N, NICOD J M, VARNIER C, et al.Decision process to manage useful life of multi-stacks fuel cell systems under service constraint[J]. Renewable energy, 2017, 105: 590-600.
[24] DIAB A A Z, ALI H, ABDUL-GHAFFAR H I, et al. Accurate parameters extraction of PEMFC model based on metaheuristics algorithms[J]. Energy reports, 2021, 7: 6854-6867.
[25] 江大发, 黄海, 李旺, 等. 燃料电池混合动力机车参数匹配与等效氢耗优化能量管理方法[J]. 太阳能学报, 2023, 44(8): 68-76.
JIANG D F, HUANG H, LI W, et al.Parameter matching and equivalent hydrogen consumption for optimization energy management of fuel cell hybrid locomotive[J]. Acta energiae solaris sinica, 2023, 44(8): 68-76.
[26] 李明, 高利华, 李泽宇. 氢能源轨道车辆及动力系统发展与创新[J]. 机车电传动, 2023(3): 32-39.
LI M, GAO L H, LI Z Y.Review on development and innovation of hydrogen-powered rail vehicles and power systems[J]. Electric drive for locomotives, 2023(3): 32-39.
[27] 华胜军. 燃料电池发动机尾气能量回收的研究[D]. 杭州: 浙江大学, 2005.
HUA S J.The research of recycling exhausted gas from fuel cell engine[D]. Hangzhou: Zhejiang University, 2005.
[28] 杜超. 燃料电池机车行业技术发展研究[J]. 科技创新导报, 2020, 17(7): 78-79.
DU C.Research on technical development of fuel cell locomotive industry[J]. Science and technology innovation herald, 2020, 17(7): 78-79.
[29] 张晗. 燃料电池混合动力有轨电车能量管理策略研究[D]. 成都: 西南交通大学, 2020.
ZHANG H.Study on energy management strategy of fuel cell hybrid electric trams[D]. Chengdu: Southwest Jiaotong University, 2020.
[30] 陈维荣, 张国瑞, 孟翔, 等. 燃料电池混合动力有轨电车动力性分析与设计[J]. 西南交通大学学报, 2017, 52(1): 1-8.
CHEN W R, ZHANG G R, MENG X, et al.Dynamic performance analysis and design of fuel cell hybrid locomotive[J]. Journal of Southwest Jiaotong University, 2017, 52(1): 1-8.
[31] 陈维荣, 钱清泉, 李奇. 燃料电池混合动力列车的研究现状与发展趋势[J]. 西南交通大学学报, 2009, 44(1): 1-6.
CHEN W R, QIAN Q Q, LI Q.Investigation status and development trend of hybrid power train based on fuel cell[J]. Journal of Southwest Jiaotong University, 2009, 44(1): 1-6.
[32] TANG A, CRISCI L, BONVILLE L, et al.An overview of bipolar plates in proton exchange membrane fuel cells[J]. Journal of renewable and sustainable energy, 2021, 13(2): 1-12.
[33] OZDEN A, SHAHGALDI S, LI X G, et al.A review of gas diffusion layers for proton exchange membrane fuel cells—with a focus on characteristics, characterization techniques, materials and designs[J]. Progress in energy and combustion science, 2019, 74: 50-102.
[34] PIVOVAR B.Catalysts for fuel cell transportation and hydrogen related uses[J]. Nature catalysis, 2019, 2: 562-565.
[35] SHAHGALDI S, OZDEN A, LI X G, et al.A novel membrane electrode assembly design for proton exchange membrane fuel cells: characterization and performance evaluation[J]. Electrochimica acta, 2019, 299: 809-819.
[36] KAHRAMAN H, ORHAN M F.Flow field bipolar plates in a proton exchange membrane fuel cell: analysis & modeling[J]. Energy conversion and management, 2017, 133: 363-384.
[37] 刘宪伟, 薛俊海, 朱威, 等. 非铂燃料电池催化剂研究进展[J]. 太阳能学报, 2022, 43(6): 286-294.
LIU X W, XUE J H, ZHU W, et al.Progress on platinum-free fuel cell catalysts[J]. Acta energiae solaris sinica, 2022, 43(6): 286-294.
[38] 刘应都, 郭红霞, 欧阳晓平. 氢燃料电池技术发展现状及未来展望[J]. 中国工程科学, 2021, 23(4): 162-171.
LIU Y D, GUO H X, OUYANG X P.Development status and future prospects of hydrogen fuel cell technology[J]. Strategic study of CAE, 2021, 23(4): 162-171.
[39] 张鹏, 李佳烨, 潘原. 单原子催化剂在氢燃料电池阴极氧还原反应中的研究进展[J]. 太阳能学报, 2022, 43(6): 306-320.
ZHANG P, LI J Y, PAN Y.Progress of single atom catalysts in cathodic oxygen reduction for reaction hydrogen fuel cell[J]. Acta energiae solaris sinica, 2022, 43(6): 306-320.
[40] 中国氢能联盟. 中国氢能源及燃料电池产业白皮书[R]. 2019.
China Hydrogen Energy Alliance. White paper on China’s hydrogen energy and fuel cell industry[R]. 2019.
[41] 周超, 王辉, 欧阳柳章, 等. 高压复合储氢罐用储氢材料的研究进展[J]. 材料导报, 2019, 33(1): 117-126.
ZHOU C, WANG H, OUYANG L Z, et al.The state of the art of hydrogen storage materials for high-pressure hybrid hydrogen vessel[J]. Materials reports, 2019, 33(1): 117-126.
[42] 李军, 薄柯, 黄强华, 等. 高压氢气储运移动式压力容器发展趋势与挑战[J]. 太阳能学报, 2022, 43(3): 20-26.
LI J, BO K, HUANG Q H, et al.Development trend and challenges of high pressure hydrogen transpotable pressure vessel[J]. Acta energiae solaris sinica, 2022, 43(3): 20-26.
PDF(1303 KB)

Accesses

Citation

Detail

Sections
Recommended

/