MEDIUM AND LONG TERM WIND POWER FORECAST BASED ON WOA-VMD-SSA-LSTM

Hu Rui, Qiao Jiafei, Li Yonghua, Sun Yaping, Wang Bingbing

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (9) : 549-556.

PDF(1164 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1164 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (9) : 549-556. DOI: 10.19912/j.0254-0096.tynxb.2023-0830

MEDIUM AND LONG TERM WIND POWER FORECAST BASED ON WOA-VMD-SSA-LSTM

  • Hu Rui1, Qiao Jiafei2, Li Yonghua1, Sun Yaping2, Wang Bingbing2
Author information +
History +

Abstract

Aiming at the problems of low accuracy and poor generalization of wind speed forecast due to randomness and volatility, a combined prediction model based on variational mode decomposition (VMD), whale optimization algorithm (WOA), long short-term memory neural network (LSTM) and sparrow search algorithm (SSA) was proposed. Firstly, WOA is used to automatically optimize the core parameters of VMD (K value and penalty coefficient α). After decomposing the wind speed time series, SSA is introduced to optimize the core learning parameters of LSTM, and finally, the predicted wind speed data of each subcomponent is integrated to obtain the final predicted wind speed, which is verified by a number of model evaluation indicators. The RMSE, MAE, MAPE and R2 of the model are 0.0758 m/s, 0.0578 m/s, 1.492% and 0.979, respectively. Compared with other single optimization prediction models WOA-VMD-LSTM and VMD-SSA-LSTM, the relevant evaluation indicators have significantly improved.

Key words

wind speed / predictive analysis / variational mode decomposition / long short-term memory neural network / whale optimization algorithm

Cite this article

Download Citations
Hu Rui, Qiao Jiafei, Li Yonghua, Sun Yaping, Wang Bingbing. MEDIUM AND LONG TERM WIND POWER FORECAST BASED ON WOA-VMD-SSA-LSTM[J]. Acta Energiae Solaris Sinica. 2024, 45(9): 549-556 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0830

References

[1] LI C B, LIN S S, XU F Q, et al.Short-term wind power prediction based on data mining technology and improved support vector machine method: a case study in Northwest China[J]. Journal of cleaner production, 2018, 205: 909-922.
[2] 贾凌云, 云斯宁, 赵泽妮, 等. 神经网络短期光伏发电预测的应用研究进展[J]. 太阳能学报, 2022, 43(12): 88-97.
JIA L Y, YUN S N, ZHAO Z N, et al.Recent progress of short-term forecasting of photovoltaic generation based on artificial neural networks[J]. Acta energiae solaris sinica, 2022, 43(12): 88-97.
[3] 王维高, 魏云冰, 滕旭东. 基于VMD-SSA-LSSVM的短期风电预测[J]. 太阳能学报, 2023, 44(3): 204-211.
WANG W G, WEI Y B, TENG X D.Short-term wind power forecasting based on VMD-SSA-LSSVM[J]. Acta energiae solaris sinica, 2023, 44(3): 204-211.
[4] 冯双磊, 王伟胜, 刘纯, 等. 基于物理原理的风电场短期风速预测研究[J]. 太阳能学报, 2011, 32(5): 611-616.
FENG S L, WANG W S, LIU C, et al.Short term wind speed prediction based on physical principle[J]. Acta energiae solaris sinica, 2011, 32(5): 611-616.
[5] 孙斌, 姚海涛, 刘婷. 基于高斯过程回归的短期风速预测[J]. 中国电机工程学报, 2012, 32(29): 104-109.
SUN B, YAO H T, LIU T.Short-term wind speed forecasting based on Gaussian process regression model[J]. Proceedings of the CSEE, 2012, 32(29): 104-109.
[6] 叶瑞丽, 郭志忠, 刘瑞叶, 等. 基于小波包分解和改进Elman神经网络的风电场风速和风电功率预测[J]. 电工技术学报, 2017, 32(21): 103-111.
YE R L, GUO Z Z, LIU R Y, et al.Wind speed and wind power forecasting method based on wavelet packet decomposition and improved Elman neural network[J]. Transactions of China Electrotechnical Society, 2017, 32(21): 103-111.
[7] LIM J Y, KIM S, KIM H K, et al.Long short-term memory (LSTM)-based wind speed prediction during a typhoon for bridge traffic control[J]. Journal of wind engineering and industrial aerodynamics, 2022, 220: 104788.
[8] CAO Q, EWING B T, THOMPSON M A.Forecasting wind speed with recurrent neural networks[J]. European journal of operational research, 2012, 221(1): 148-154.
[9] REN C, AN N, WANG J Z, et al.Optimal parameters selection for BP neural network based on particle swarm optimization: a case study of wind speed forecasting[J]. Knowledge-based systems, 2014, 56: 226-239.
[10] ZHANG X, WANG Y X, CHEN Y L, et al.Short-term wind speed prediction based on GRU[C]//2019 IEEE Sustainable Power and Energy Conference (iSPEC). Beijing, China, 2019: 882-887.
[11] 赵泽妮, 云斯宁, 贾凌云, 等. 基于统计模型的短期风能预测方法研究进展[J]. 太阳能学报, 2022, 43(11): 224-234.
ZHAO Z N, YUN S N, JIA L Y, et al.Recent progress in short-term forecasting of wind energy based on statistical models[J]. Acta energiae solaris sinica, 2022, 43(11): 224-234.
[12] ZHANG Y G, CHEN B, PAN G F, et al.A novel hybrid model based on VMD-WT and PCA-BP-RBF neural network for short-term wind speed forecasting[J]. Energy conversion and management, 2019, 195: 180-197.
[13] 周小麟, 童晓阳. 基于CEEMD-SBO-LSSVR的超短期风电功率组合预测[J]. 电网技术, 2021, 45(3): 855-864.
ZHOU X L, TONG X Y.Ultra-short-term wind power combined prediction based on CEEMD-SBO-LSSVR[J]. Power system technology, 2021, 45(3): 855-864.
[14] 潘超, 李润宇, 蔡国伟, 等. 基于属性约简重构的自校正卷积记忆风速预测[J]. 中国电机工程学报, 2023, 43(7): 2721-2732.
PAN C, LI R Y, CAI G W, et al.Wind speed prediction with self-tuning convolutional memory based on attribute reduction reconstruction[J]. Proceedings of the CSEE, 2023, 43(7): 2721-2732.
[15] LU P, YE L, ZHAO Y N, et al.Review of meta-heuristic algorithms for wind power prediction: methodologies, applications and challenges[J]. Applied energy, 2021, 301: 117446.
[16] 孟建军, 江相君, 李德仓, 等. 基于VMD-LSTM-WOA的铁路沿线风速预测模型[J]. 传感器与微系统, 2023, 42(4): 152-156.
MENG J J, JIANG X J, LI D C, et al.Wind speed prediction model along railway based on VMD-LSTM-WOA[J]. Transducer and microsystem technologies, 2023, 42(4): 152-156.
[17] RUIZ-AGUILAR J J, TURIAS I, GONZÁLEZ-ENRIQUE J, et al. A permutation entropy-based EMD-ANN forecasting ensemble approach for wind speed prediction[J]. Neural computing and applications, 2021, 33(7): 2369-2391.
[18] 徐炜君. 基于灰狼优化SVR的风电场功率超短期预测[J]. 杭州师范大学学报(自然科学版), 2021, 20(2): 177-182.
XU W J.Ultra short term wind power forecasting of wind farm based on grey wolf optimized SVR[J]. Journal of Hangzhou Normal University (natural science edition), 2021, 20(2): 177-182.
[19] 王佶宣, 邓斌, 王江. 基于经验模态分解与RBF神经网络的短期风功率预测[J]. 电力系统及其自动化学报, 2020, 32(11): 109-115.
WANG J X, DENG B, WANG J.Short-term wind power prediction based on empirical mode decomposition and RBF neural network[J]. Proceedings of the CSU-EPSA, 2020, 32(11): 109-115.
[20] YANOVSKY I, DRAGOMIRETSKIY K.Variational destriping in remote sensing imagery: total variation with L1 fidelity[J]. Remote sensing, 2018, 10(2): 300.
[21] 林爱美. 基于多任务学习的风光电站群功率预测方法研究[D]. 北京: 华北电力大学, 2021.
LIN A M.Research on multi-task learning based method for power forecasting in wind and solar power station cluster[D]. Beijing: North China Electric Power University, 2021.
[22] 甄成刚, 张争鹏. 基于VMD分解与MIC特征分析的风电功率组合预测[J]. 郑州大学学报(理学版), 2022, 54(3): 88-94.
ZHEN C G, ZHANG Z P.Wind power combined prediction based on VMD decomposition and MIC feature analysis[J]. Journal of Zhengzhou University (natural science edition), 2022, 54(3): 88-94.
PDF(1164 KB)

Accesses

Citation

Detail

Sections
Recommended

/