OPTIMUM DESIGN METHOD OF SOURCE SIDE PARAMETER FOR DEEP BOREHOLE GEOTHERMAL HEAT PUMP HEATING SYSTEM

Li Jintang, Li Ji, Zhang Guangqiu, Sun Zongyu, Zhu Chao, Kong Weizheng

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (9) : 1-13.

PDF(1655 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1655 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (9) : 1-13. DOI: 10.19912/j.0254-0096.tynxb.2023-0851

OPTIMUM DESIGN METHOD OF SOURCE SIDE PARAMETER FOR DEEP BOREHOLE GEOTHERMAL HEAT PUMP HEATING SYSTEM

  • Li Jintang1, Li Ji1, Zhang Guangqiu1, Sun Zongyu1, Zhu Chao2, Kong Weizheng3
Author information +
History +

Abstract

Relying on the existing engineering experience data or the short-term heat transfer test results of middle and deep borehole heat exchanger, an extensive method is typically used to design the middle and deep borehole geothermal heat pump heating system. It leads to the unreasonable configuration of the borehole heat exchange system and the reduction of the reliability and economy of heat pump heating system. In order to improve the design status of the middle and deep borehole heat exchange system, a dynamic simulation method is adopted in this paper, considering the design load, cumulative load and hourly load distribution law, to analyze the unsteady characteristics of deep-buried geothermal resources in the long-term dimension and the temperature-self-recovery performance of rock and soil, and determine the designed water supply and return temperature at the source side based on the "annual periodic cooling and heat balance of final state" of underground rock and soil. And optimization method of source-side design flowrate based on the optimization of the average annual life-cycle cost on the ground source side is proposed. Taking an engineering project as an example, the optimization design of source-side parameter is given.

Key words

geothermal energy / coaxial deep borehole heat exchanger / long-term heat transfer performance / annual fully renewable status / dynamic simulation

Cite this article

Download Citations
Li Jintang, Li Ji, Zhang Guangqiu, Sun Zongyu, Zhu Chao, Kong Weizheng. OPTIMUM DESIGN METHOD OF SOURCE SIDE PARAMETER FOR DEEP BOREHOLE GEOTHERMAL HEAT PUMP HEATING SYSTEM[J]. Acta Energiae Solaris Sinica. 2024, 45(9): 1-13 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0851

References

[1] 徐伟, 李建峰, 魏庆芃, 等. 中深层地埋管地热热泵供暖关键技术研究与应用[J]. 建设科技, 2022(7): 45-47.
XU W, LI J F, WEI Q P, et al.Research and application of key heating technology of mid-deep geothermal heat pump system[J]. Construction science and technology, 2022(7): 45-47.
[2] 张哲菲, 刘洪涛, 刘攀峰, 等. 中深层地热地埋管实际运行影响因素研究[J]. 太阳能学报, 2022, 43(12): 503-509.
ZHANG Z F, LIU H T, LIU P F, et al.Study on actual operation and influencing factors of middle-deep geothermal buried pipe[J]. Acta energiae solaris sinica, 2022, 43(12): 503-509.
[3] DENG J W, HE S, WEI Q P, et al.Field test and optimization of heat pumps and water distribution systems in medium-depth geothermal heat pump systems[J]. Energy and buildings, 2020, 209: 109724.
[4] LI J, XU W, LI J F, et al.Heat extraction model and characteristics of coaxial deep borehole heat exchanger[J]. Renewable energy, 2021, 169: 738-751.
[5] SAPINSKA-SLIWA A, ROSEN M A, GONET A, et al.Deep borehole heat exchangers-a conceptual and comparative review[J]. International journal of air-conditioning and refrigeration, 2016, 24(1): 1630001.
[6] HUCHTEMANN K, MÜLLER D. Combined simulation of a deep ground source heat exchanger and an office building[J]. Building and environment, 2014, 73: 97-105.
[7] 刘俊, 张育平, 王沣浩, 等. 中深层套管式换热器可持续供热性能及优化设计研究[J]. 地球学报, 2023, 44(1): 230-238.
LIU J, ZHANG Y P, WANG F H, et al.Study on sustainable heating performance and optimization design of medium-deep coaxial heat exchanger[J]. Acta geoscientica sinica, 2023, 44(1): 230-238.
[8] 李鹏程. 中深层地热源热泵套管式地埋管换热器传热特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2018.
LI P C.Research on heat transfer characteristics of casing ground heat exchanger with medium and deep ground source heat pump[D]. Harbin: Harbin Institute of Technology, 2018.
[9] 李思奇, 赵军, 李扬, 等. 闭式中深层井下换热数值模拟与内管分段绝热影响研究[J]. 太阳能学报, 2020, 41(11): 369-374.
LI S Q, ZHAO J, LI Y, et al.Numerical simulation of closed loop medium-deep downhole heat exchange: a focus on influence of segmented insulation on central pipe[J]. Acta energiae solaris sinica, 2020, 41(11): 369-374.
[10] 卜宪标, 冉运敏, 李华山, 等. 既有地热单井采暖系统换热量的增强方法[J]. 太阳能学报, 2020, 41(10): 369-374.
BU X B, RAN Y M, LI H S, et al.Enhancing heat transfer methods of existing geothermal single well heating system[J]. Acta energiae solaris sinica, 2020, 41(10): 369-374.
[11] 杜丁山, 赵永哲, 胡振阳, 等. 隔热内管对中深层地热井同轴换热器换热性能的影响[J]. 煤炭工程, 2023, 55(2): 164-170.
DU D S, ZHAO Y Z, HU Z Y, et al.Effect of insulated inner tube on performance of coaxial heat exchanger in medium-deep geothermal well[J]. Coal engineering, 2023, 55(2): 164-170.
[12] 陆耀庆. 实用供热空调设计手册[M]. 2版. 北京: 中国建筑工业出版社, 2008.
LU Y Q.Practical heating and air conditioning design manual[M]. 2nd ed. Beijing: China Architecture & Building Press, 2008.
[13] T/CECS 854—2021, 中深层地埋管地源热泵供暖技术规程[S]. 2021.
T/CECS 854—2021, Technical specification for middle and deep borehole geothermal heat pump heating system[S]. 2021.
PDF(1655 KB)

Accesses

Citation

Detail

Sections
Recommended

/