FREQUENCE STABILITY CONTROL OF POWER GRID BASED ON FAST FREQUENCY RESPONSE OF ELECTRIC HYDROGEN PRODUCTION SYSTEM

Zeng Guanwei, Liu Chengxi, Liao Minfang, Dong Xuzhu

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (10) : 1-10.

PDF(1455 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1455 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (10) : 1-10. DOI: 10.19912/j.0254-0096.tynxb.2023-0861

FREQUENCE STABILITY CONTROL OF POWER GRID BASED ON FAST FREQUENCY RESPONSE OF ELECTRIC HYDROGEN PRODUCTION SYSTEM

  • Zeng Guanwei1,2, Liu Chengxi1,2, Liao Minfang1,2, Dong Xuzhu1,2
Author information +
History +

Abstract

In view of the decline of frequency stability in the power grid caused by the shortage of frequency regulation resource, this paper takes electrolytic water hydrogen production system as the research object, through establishing a refined dynamic model and the targeted control strategy, so that electrolytic water hydrogen production system can provide fast frequency response, which fully exploits the frequency regulation potential of electrical, hydrogen and heat energy within the electrolyzers system. In addition, the mechanism and ability of the fast frequency response provided by the electrolyzers are analyzed. The results show that the established model can reveal the electric-hydrogen-thermal coupling mechanism and characterize the frequency response characteristics of the electrolyzers system during the fast frequency response. The fast frequency response provided by the electrolyzers system can improve the frequency stability of the power grid under multiple disturbance scenarios.

Key words

frequency stability / electrolysis / fast frequency response / control strategy / power to hydrogen system / freaquency response characteristic

Cite this article

Download Citations
Zeng Guanwei, Liu Chengxi, Liao Minfang, Dong Xuzhu. FREQUENCE STABILITY CONTROL OF POWER GRID BASED ON FAST FREQUENCY RESPONSE OF ELECTRIC HYDROGEN PRODUCTION SYSTEM[J]. Acta Energiae Solaris Sinica. 2024, 45(10): 1-10 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0861

References

[1] 孙骁强, 刘鑫, 程林, 等. 基于多调频资源协调控制的西北送端大电网新能源快速频率响应参数设置方案[J]. 电网技术, 2019, 43(5): 1760-1765.
SUN X Q, LIU X, CHENG L, et al.Parameter setting of rapid frequency response of renewable energy sources in northwest power grid based on coordinated control of multi-frequency regulation resources[J]. Power system technology, 2019, 43(5): 1760-1765.
[2] 马晓锋, 张舒涵, 何勇, 等. PEM电解水制氢技术的研究现状与应用展望[J]. 太阳能学报, 2022, 43(6): 420-427.
MA X F, ZHANG S H, HE Y, et al.Research status and application prospect of PEM electrolysis water technology for hydrogen production[J]. Acta energiae solaris sinica, 2022, 43(6): 420-427.
[3] 张贵鹏, 程静. 计及碳捕集的虚拟电厂-电解水制氢多主体协调优化[J]. 太阳能学报, 2023, 44(8): 92-101.
ZHANG G P, CHENG J.Multi-agent coordination and optimization of VPPS-P2H based on carbon capture[J]. Acta energiae solaris sinica, 2023, 44(8): 92-101.
[4] 许世森, 张瑞云, 程健, 等. 电解制氢与高温燃料电池在电力行业的应用与发展[J]. 中国电机工程学报, 2019, 39(9): 2531-2537.
XU S S, ZHANG R Y, CHENG J, et al.Application and development of electrolytic hydrogen production and high temperature fuel cell in electric power industry[J]. Proceedings of the CSEE, 2019, 39(9): 2531-2537.
[5] 尤石, 郑艺, 黄纯军. 电解水制氢在丹麦能源系统中的发展与应用[J]. 供用电, 2022, 39(1): 2-7.
YOU S, ZHENG Y, HUANG C J.Converting green electricity to green hydrogen: the status and prospects of water electrolyser development and applications in Denmark[J]. Distribution & utilization, 2022, 39(1): 2-7.
[6] 张红, 袁铁江, 谭捷, 等. 面向统一能源系统的氢能规划框架[J]. 中国电机工程学报, 2022, 42(1): 83-94.
ZHANG H, YUAN T J, TAN J, et al.Hydrogen energy system planning framework for unified energy system[J]. Proceedings of the CSEE, 2022, 42(1): 83-94.
[7] 徐滨, 王锐, 苏伟, 等. 质子交换膜电解水技术关键材料的研究进展与展望[J]. 储能科学与技术, 2022, 11(11): 3510-3520.
XU B, WANG R, SU W, et al.Research progress and prospect of key materials of proton exchange membrane water electrolysis[J]. Energy storage science and technology, 2022, 11(11): 3510-3520.
[8] 施正荣, 翁楚, 蔡靖雍, 等. 基于PV/T的质子交换膜电解制氢系统动态性能研究[J]. 太阳能学报, 2023, 44(8): 164-170.
SHI Z R, WENG C, CAI J Y, et al.Study on dynamic performance of PV/T based on proton exchange membrane water electrolysis system[J]. Acta energiae solaris sinica, 2023, 44(8): 164-170.
[9] 陈亦平, 卓映君, 刘映尚, 等. 高比例可再生能源电力系统的快速频率响应市场发展与建议[J]. 电力系统自动化, 2021, 45(10): 174-183.
CHEN Y P, ZHUO Y J, LIU Y S, et al.Development and recommendation of fast frequency response market for power system with high proportion of renewable energy[J]. Automation of electric power systems, 2021, 45(10): 174-183.
[10] 黄俊凯, 杨知方, 余娟, 等. 面向频率稳定校核的风机快速频率响应低阶建模方法及其误差分析[J]. 中国电机工程学报, 2022, 42(18): 6752-6766.
HUANG J K, YANG Z F, YU J, et al.Low-order modeling of wind turbine-based fast frequency response and its error analysis for frequency stability assessment[J]. Proceedings of the CSEE, 2022, 42(18): 6752-6766.
[11] 涂思嘉. 风-储系统快速频率响应控制策略研究[D]. 天津: 天津大学, 2019.
TU S J.Research on control strategy to enhance the fast-frequency response capability of DFIG-ES system[D]. Tianjin: Tianjin University, 2019.
[12] SUN K Q, XIAO H Q, LIU S Y, et al.Machine learning-based fast frequency response control for a VSC-HVDC system[J]. CSEE journal of power and energy systems, 2021, 7(4): 688-697.
[13] KELLER R, RAULS E, HEHEMANN M, et al.An adaptive model-based feedforward temperature control of a 100 kW PEM electrolyzer[J]. Control engineering practice, 2022, 120: 104992.
[14] FERRERO D, SANTARELLI M.Investigation of a novel concept for hydrogen production by PEM water electrolysis integrated with multi-junction solar cells[J]. Energy conversion and management, 2017, 148: 16-29.
[15] 温源. 风电解水制氢能量管理系统控制方法研究[D]. 北京: 华北电力大学, 2019.
WEN Y.Research on control strategy of energy management system of wind power and hydrogen[D]. Beijing: North China Electric Power University, 2019.
[16] SARRIAS-MENA R, FERNÁNDEZ-RAMÍREZ L M, GARCÍA-VÁZQUEZ C A, et al. Electrolyzer models for hydrogen production from wind energy systems[J]. International journal of hydrogen energy, 2015, 40(7): 2927-2938.
[17] ALZAHRANI A A, DINCER I.Thermodynamic and electrochemical analyses of a solid oxide electrolyzer for hydrogen production[J]. International journal of hydrogen energy, 2017, 42(33): 21404-21413.
[18] GARCÍA-VALVERDE R, ESPINOSA N, URBINA A. Simple PEM water electrolyser model and experimental validation[J]. International journal of hydrogen energy, 2012, 37(2): 1927-1938.
[19] HUANG P.Humidity standard of compressed hydrogen for fuel cell technology[J]. ECS transactions, 2008, 12(1): 479-484.
[20] EMANUELE T, HERIB B, RAUL M, et al. Green hydrogen cost reduction: scaling up electrolysers to meet the 1.5 ℃ climate goal[R]. International Renewable Energy Agency(IRENA), 2978-92-9260-295-6, 2020.
[21] GB/T 15945—2008, 电能质量: 电力系统频率偏差[S].
GB/T 15945—2008, Power quality: frequency deviation for power system[S].
[22] EICHMAN J, HARRISON K, PETERS M.Novel electrolyzer applications: providing more than just hydrogen[R]. National Renewable Energy Laboratory(NREL), 31159377, 2014.
PDF(1455 KB)

Accesses

Citation

Detail

Sections
Recommended

/