CAPACITY OPTIMIZATION CONFIGURATION OF EQUIPMENT IN HYDROGEN REFUELING STATION CONSIDERING MICROGRID RESIDUAL ELECTRICITY TO HYDROGEN PRODUCTION

Qu Bolin, Zhang Xuexia, Chen Weirong, Li Jianhua, Liu Wentao

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (10) : 11-21.

PDF(2274 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2274 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (10) : 11-21. DOI: 10.19912/j.0254-0096.tynxb.2023-0862

CAPACITY OPTIMIZATION CONFIGURATION OF EQUIPMENT IN HYDROGEN REFUELING STATION CONSIDERING MICROGRID RESIDUAL ELECTRICITY TO HYDROGEN PRODUCTION

  • Qu Bolin1, Zhang Xuexia1, Chen Weirong1, Li Jianhua2, Liu Wentao3
Author information +
History +

Abstract

In view of the phenomenon of "abandoned wind power", "abandoned photovoltaics" and "abandoned hydropower" in microgrids and the increasing demand for hydrogen load, a certain capacity of hydrogen production/storage equipment is considered to be deployed in the offsite hydrogen refueling station to centralize the consumption of surplus electricity from microgrids. Through the research of the topology and mathematical model of microgrid-hydrogen refueling station system (MHSS) containing wind power, photovoltaic, small hydropower, as well as electrolysis tank, hydrogen storage tank and reformer, a capacity optimization configuration model of hydrogen production/storage equipment with the objective of minimizing the total net present cost of the whole life cycle of the hydrogen refueling station is established, and the combined electric-hydrogen operation model for residual electricity to hydrogen-green hydrogen first (RETH-GHF) is proposed. In the example, the adaptive simulated annealing particle swarm optimization (ASAPSO) algorithm is applied to simulate the system with the practical scenario. By comparing the configuration results and cost-benefit details of offsite centralized/onsite decentralized hydrogen production schemes of microgrids, it is proved that the scheme of offsite centralized hydrogen production is more economical in the example scenario, and the economics of the two schemes of hydrogen production have been re-compared by taking into account the impact of industrial electricity price, hydrogen and natural gas price fluctuations on the total net present cost of the hydrogen refueling station throughout its life cycle, and finally, the rationality of the capacity optimization configuration model for hydrogen production/storage equipment in the hydrogen refueling station is verified with system operation of typical days in four seasons.

Key words

microgrids / hydrogen production / hydrogenation / life cycle / capacity optimization configuration

Cite this article

Download Citations
Qu Bolin, Zhang Xuexia, Chen Weirong, Li Jianhua, Liu Wentao. CAPACITY OPTIMIZATION CONFIGURATION OF EQUIPMENT IN HYDROGEN REFUELING STATION CONSIDERING MICROGRID RESIDUAL ELECTRICITY TO HYDROGEN PRODUCTION[J]. Acta Energiae Solaris Sinica. 2024, 45(10): 11-21 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0862

References

[1] 李亮荣, 彭建, 付兵, 等. 碳中和愿景下绿色制氢技术发展趋势及应用前景分析[J]. 太阳能学报, 2022, 43(6): 508-520.
LI L R, PENG J, FU B, et al.Development trend and application prospect of green hydrogen production technologies under carbon neutrality vision[J]. Acta energiae solaris sinica, 2022, 43(6): 508-520.
[2] 张诚, 檀志恒, 晁怀颇. “双碳” 背景下数据中心氢能应用的可行性研究[J]. 太阳能学报, 2022, 43(6): 327-334.
ZHANG C, TAN Z H, CHAO H P.Feasibility study of hydrogen energy application on data center under “carbon peaking and neutralization” background[J]. Acta energiae solaris sinica, 2022, 43(6): 327-334.
[3] 李竹, 宋莉, 于松泰, 等. 促进可再生能源市场化的省内中长期运行策略研究[J]. 太阳能学报, 2023, 44(2): 317-325.
LI Z, SONG L, YU S T, et al.Research on medium and long-term operation strategy of promoting marketization of renewable energy in province[J]. Acta energiae solaris sinica, 2023, 44(2): 317-325.
[4] THAPA B S, NEUPANE B, YANG H S, et al.Green hydrogen potentials from surplus hydro energy in Nepal[J]. International journal of hydrogen energy, 2021, 46(43): 22256-22267.
[5] KENNEDY N, MIAO C Q, WU Q B, et al.Optimal hybrid power system using renewables and hydrogen for an isolated island in the UK[J]. Energy procedia, 2017, 105: 1388-1393.
[6] BAMISILE O, LI J, HUANG Q, et al.Environmental impact of hydrogen production from Southwest China’s hydro power water abandonment control[J]. International journal of hydrogen energy, 2020, 45(46): 25587-25598.
[7] HOU H, CHEN Y, LIU P, et al.Multisource energy storage system optimal dispatch among electricity hydrogen and heat networks from the energy storage operator prospect[J]. IEEE transactions on industry applications, 2022, 58(2): 2825-2835.
[8] 李佳蓉, 林今, 陈凯旋, 等. 考虑尾流效应的分布式海上风电制氢集群容量优化配置[J]. 电力系统自动化, 2023, 47(11): 9-17.
LI J R, LIN J, CHEN K X, et al.Optimal capacity configuration of distributed offshore wind power-to-hydrogen cluster considering wake effect[J]. Automation of electric power systems, 2023, 47(11): 9-17.
[9] 曹蕃, 郭婷婷, 陈坤洋, 等. 风电耦合制氢技术进展与发展前景[J]. 中国电机工程学报, 2021, 41(6): 2187-2201.
CAO F, GUO T T, CHEN K Y, et al.Progress and development prospect of coupled wind and hydrogen systems[J]. Proceedings of the CSEE, 2021, 41(6): 2187-2201.
[10] LIN L, ZHENG X Y, GU J.Optimal dispatching of combined heat and power system considering the power demand elasticity of hydrogen storage active load[J]. IEEE transactions on industry applications, 2022, 58(2): 2760-2770.
[11] 张红, 袁铁江, 谭捷, 等. 面向统一能源系统的氢能规划框架[J]. 中国电机工程学报, 2022, 42(1): 83-94.
ZHANG H, YUAN T J, TAN J, et al.Hydrogen energy system planning framework for unified energy system[J]. Proceedings of the CSEE, 2022, 42(1): 83-94.
[12] 李佳蓉, 林今, 邢学韬, 等. 主动配电网中基于统一运行模型的电制氢(P2H)模块组合选型与优化规划[J]. 中国电机工程学报, 2021, 41(12): 4021-4033.
LI J R, LIN J, XING X T, et al.Technology portfolio selection and optimal planning of power-to-hydrogen(P2H) modules in active distribution network[J]. Proceedings of the CSEE, 2021, 41(12): 4021-4033.
[13] WANG S Y, BO R.Joint planning of electricity transmission and hydrogen transportation networks[J]. IEEE transactions on industry applications, 2022, 58(2): 2887-2897.
[14] LI J R, LIN J, ZHANG H C, et al.Optimal investment of electrolyzers and seasonal storages in hydrogen supply chains incorporated with renewable electric networks[J]. IEEE transactions on sustainable energy, 2020, 11(3): 1773-1784.
[15] 郑博, 白章, 袁宇, 等. 多类型电解协同的风光互补制氢系统与容量优化[J]. 中国电机工程学报, 2022, 42(23): 8486-8496.
ZHENG B, BAI Z, YUAN Y, et al.Hydrogen production system and capacity optimization based on synergistic operation with multi-type electrolyzers under wind-solar power[J]. Proceedings of the CSEE, 2022, 42(23): 8486-8496.
[16] 魏泽涛, 刘友波, 沈晓东, 等. 基于样本数据迁移学习的贫资料地区小水电超短期出力建模及发电预测[J]. 中国电机工程学报, 2023, 43(7): 2652-2666.
WEI Z T, LIU Y B, SHEN X D, et al.Ultra-short-term power generation modeling and prediction for small hydropower in data-scarce areas based on sample data transfer learning[J]. Proceedings of the CSEE, 2023, 43(7): 2652-2666.
[17] 刘翠伟, 裴业斌, 韩辉, 等. 氢能产业链及储运技术研究现状与发展趋势[J]. 油气储运, 2022, 41(5): 498-514.
LIU C W, PEI Y B, HAN H, et al.Research status and development trend of hydrogen energy industry chain and the storage and transportation technologies[J]. Oil & gas storage and transportation, 2022, 41(5): 498-514.
[18] 魏繁荣, 随权, 林湘宁, 等. 考虑制氢设备效率特性的煤风氢能源网调度优化策略[J]. 中国电机工程学报, 2018, 38(5): 1428-1439.
WEI F R, SUI Q, LIN X N, et al.Energy control scheduling optimization strategy for coal-wind-hydrogen energy grid under consideration of the efficiency features of hydrogen production equipment[J]. Proceedings of the CSEE, 2018, 38(5): 1428-1439.
[19] 丁镠, 唐涛, 王耀萱, 等. 氢储运技术研究进展与发展趋势[J]. 天然气化工(C1化学与化工), 2022, 47(2): 35-40.
DING L, TANG T, WANG Y X, et al.Research progress and development trend of hydrogen storage and transportation technology[J]. Natural gas chemical industry, 2022, 47(2): 35-40.
[20] 张继红, 阚圣钧, 化玉伟, 等. 基于氢气储能的热电联供微电网容量优化配置[J]. 太阳能学报, 2022, 43(6): 428-434.
ZHANG J H, KAN S J, HUA Y W, et al.Capacity optimization of CHP microgrid based on hydrogen energy storage[J]. Acta energiae solaris sinica, 2022, 43(6): 428-434.
[21] 单彤文, 宋鹏飞, 侯建国, 等. LNG产业视角下不同天然气制氢模式的终端氢气成本分析[J]. 天然气化工(C1化学与化工), 2020, 45(2): 129-134.
SHAN T W, SONG P F, HOU J G, et al.Cost analysis of hydrogen produced from different modes of natural gas to hydrogen: from the perspective of LNG industry[J]. Natural gas chemical industry, 2020, 45(2): 129-134.
[22] 常宏岗. 天然气制氢技术及经济性分析[J]. 石油与天然气化工, 2021, 50(4): 53-57.
CHANG H G.Technical and economic analysis of hydrogen production from natural gas[J]. Chemical engineering of oil & gas, 2021, 50(4): 53-57.
[23] 曹子健, 林今, 宋永华. 含分布式电源及灵活负荷的配电网电量合约市场[J]. 电网技术, 2019, 43(7): 2430-2440.
CAO Z J, LIN J, SONG Y H.Electricity contract market for distribution network with distributed generations and flexible loads[J]. Power system technology, 2019, 43(7): 2430-2440.
[24] KENNEDY J, EBERHART R.Particle swarm optimization[C]//Proceedings of ICNN’95-International Conference on Neural Networks. Perth, WA, Australia, 1995: 1942-1948.
[25] 高有山, 权龙, 王爱红, 等. 天然气蒸汽重整制氢WTT阶段能量消耗及排放分析[J]. 机械工程学报, 2013, 49(8): 158-164.
GAO Y S, QUAN L, WANG A H, et al.Well-to-teel analysis of energy consumption and emissions for hydrogen produced with natural gas by steam reforming[J]. Journal of mechanical engineering, 2013, 49(8): 158-164.
[26] 郑欣妍. 天然气分布式能源环境效益评估研究[D]. 北京: 中国石油大学(北京), 2017.
ZHENG X Y.Study on energy efficiency assessment of natural gas distributed energy[D]. Beijing: China University of Petroleum (Beijing), 2017.
[27] 王阳峰, 张英, 陈春凤, 等. 天然气蒸汽重整制氢装置原料优化研究[J]. 石油与天然气化工, 2020, 49(3): 48-52, 60.
WANG Y F, ZHANG Y, CHEN C F, et al.Study on the optimization of raw material for hydrogen production unit in refinery[J]. Chemical engineering of oil & gas, 2020, 49(3): 48-52, 60.
[28] 李妍, 常皓明, 林世响, 等. 外供氢与现场制氢加氢站的氢气成本分析[J]. 煤气与热力, 2022, 42(3): 26-29.
LI Y, CHANG H M, LIN S X, et al.Hydrogen cost analysis of external hydrogen supply and on-site hydrogen production refueling station[J]. Gas & heat, 2022, 42(3): 26-29.
[29] 刘玮, 万燕鸣, 熊亚林, 等. 碳中和目标下电解水制氢关键技术及价格平准化分析[J]. 电工技术学报, 2022, 37(11): 2888-2896.
LIU W, WAN Y M, XIONG Y L, et al.Key technology of water electrolysis and levelized cost of hydrogen analysis under carbon neutral vision[J]. Transactions of China Electrotechnical Society, 2022, 37(11): 2888-2896.
PDF(2274 KB)

Accesses

Citation

Detail

Sections
Recommended

/