DISTRIBUTIONALLY ROBUST THERMOELECTRICITY TRADING OPTIMIZATION FOR MULTIPLE-INTEGRATED ENERGY SERVICE PROVIDERS BASED ON ASYMMETRIC NASH BARGAINING

Zheng Jiekai, He Shan, Wang Weiqing, Yuan Zhi, Cheng Zhijiang, Fan Xiaozhao

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (10) : 121-133.

PDF(1403 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1403 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (10) : 121-133. DOI: 10.19912/j.0254-0096.tynxb.2023-0881

DISTRIBUTIONALLY ROBUST THERMOELECTRICITY TRADING OPTIMIZATION FOR MULTIPLE-INTEGRATED ENERGY SERVICE PROVIDERS BASED ON ASYMMETRIC NASH BARGAINING

  • Zheng Jiekai1, He Shan1,2, Wang Weiqing1,2, Yuan Zhi1,2, Cheng Zhijiang1,2, Fan Xiaozhao3
Author information +
History +

Abstract

In power systems with a high proportion of renewable energy, the uncertainty of the source side seriously affects the economic operation of multi-integrated energy systems. Additionally, the fairness of income distribution among multi-service providers influences their willingness to participate in cooperation, thereby affecting the stability of the overall alliance. Addressing these issues, a multi-energy integrated system model is established, incorporating electrothermal gas and multi-energy cooperation, including power-to-gas coupling, carbon capture and storage, and hydrogen fuel cells. Firstly, based on historical wind power and photovoltaic data, a two-stage distributionally robust optimization scheduling model for multi-integrated energy systems is proposed, utilizing a data-driven approach. The column and constraint generation algorithm is employed to solve this model. Next, a heat and power sharing trading model for multi-integrated energy service providers is established based on the Harsanyi game. The alternating direction method of multipliers is used to solve the problem of maximizing payment benefits through asymmetric bargaining. Numerical examples demonstrate that the proposed distributionally robust thermoelectric transaction model, which includes joint demand response, effectively promotes the consumption of new energy. The asymmetric bargaining method, considering multiple negotiation factors, ensures the fair distribution of benefits.

Key words

integrated energy system / demand response / distributionally robust optimization / thermal power trading / asymmetric bargaining

Cite this article

Download Citations
Zheng Jiekai, He Shan, Wang Weiqing, Yuan Zhi, Cheng Zhijiang, Fan Xiaozhao. DISTRIBUTIONALLY ROBUST THERMOELECTRICITY TRADING OPTIMIZATION FOR MULTIPLE-INTEGRATED ENERGY SERVICE PROVIDERS BASED ON ASYMMETRIC NASH BARGAINING[J]. Acta Energiae Solaris Sinica. 2024, 45(10): 121-133 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0881

References

[1] 任大伟, 肖晋宇, 侯金鸣, 等. 双碳目标下我国新型电力系统的构建与演变研究[J]. 电网技术, 2022, 46(10): 3831-3839.
REN D W, XIAO J Y, HOU J M, et al.Construction and evolution of China’s new power system under dual carbon goal[J]. Power system technology, 2022, 46(10): 3831-3839.
[2] 刘起兴, 胡亚平, 许丹莉, 等. 计及综合能源服务商调节域的综合需求响应市场机制[J]. 电网技术, 2021, 45(5): 1932-1943.
LIU Q X, HU Y P, XU D L, et al.Integrated demand response market mechanism considering adjustable region of integrated energy service providers[J]. Power system technology, 2021, 45(5): 1932-1943.
[3] 崔明勇, 宣名阳, 卢志刚, 等. 基于合作博弈的多综合能源服务商运行优化策略[J]. 中国电机工程学报, 2022, 42(10): 3548-3564.
CUI M Y, XUAN M Y, LU Z G, et al.Operation optimization strategy of multi integrated energy service companies based on cooperative game theory[J]. Proceedings of the CSEE, 2022, 42(10): 3548-3564.
[4] MA Y M, WANG H X, HONG F, et al.Modeling and optimization of combined heat and power with power-to-gas and carbon capture system in integrated energy system[J]. Energy, 2021, 236: 121392.
[5] 孙惠娟, 刘昀, 彭春华, 等. 计及电转气协同的含碳捕集与垃圾焚烧虚拟电厂优化调度[J]. 电网技术, 2021, 45(9): 3534-3545.
SUN H J, LIU Y, PENG C H, et al.Optimization scheduling of virtual power plant with carbon capture and waste incineration considering power-to-gas coordination[J]. Power system technology, 2021, 45(9): 3534-3545.
[6] 陈锦鹏, 胡志坚, 陈颖光, 等. 考虑阶梯式碳交易机制与电制氢的综合能源系统热电优化[J]. 电力自动化设备, 2021, 41(9): 48-55.
CHEN J P, HU Z J, CHEN Y G, et al.Thermoelectric optimization of integrated energy system considering ladder-type carbon trading mechanism and electric hydrogen production[J]. Electric power automation equipment, 2021, 41(9): 48-55.
[7] 丁煜蓉, 陈红坤, 吴军, 等. 计及综合能效的电-气-热综合能源系统多目标优化调度[J]. 电力系统自动化, 2021, 45(2): 64-73.
DING Y R, CHEN H K, WU J, et al.Multi-objective optimal dispatch of electricity-gas-heat integrated energy system considering comprehensive energy efficiency[J]. Automation of electric power systems, 2021, 45(2): 64-73.
[8] 闫梦阳, 李华强, 王俊翔, 等. 计及综合需求响应不确定性的园区综合能源系统优化运行模型[J]. 电力系统保护与控制, 2022, 50(2): 163-175.
YAN M Y, LI H Q, WANG J X, et al.Optimal operation model of a park integrated energy system considering uncertainty of integrated demand response[J]. Power system protection and control, 2022, 50(2):163-175.
[9] 宋晓通, 吕倩楠, 孙艺, 等. 基于电价引导的电动汽车与综合能源系统交互策略[J]. 高电压技术, 2021, 47(10): 3744-3756.
SONG X T, LYU Q N, SUN Y, et al.Interactive strategy of electric vehicles and integrated energy system based on electricity price guidance[J]. High voltage engineering, 2021, 47(10): 3744-3756.
[10] 李笑竹, 王维庆. 基于贝叶斯理论的分布鲁棒优化在储能配置上的应用[J]. 电网技术, 2022, 46(10): 4001-4011.
LI X Z,WANG W Q.Application of distributed robust optimization based on bayesian theory in allocation of energy storage[J]. Power system technology, 2022, 46(10): 4001-4011.
[11] XIONG P, SINGH C.Optimal planning of storage in power systems integrated with wind power generation[J]. IEEE transactions on sustainable energy, 2016, 7(1): 232-240.
[12] 王善磊, 孙国强, 吴晨, 等. 基于集中-分散交易机制的多产消者两阶段鲁棒优化模型[J]. 电力自动化设备, 2022, 42(5): 175-182.
WANG S L, SUN G Q, WU C, et al.Two-stage robust optimization model of multiple prosumers based on centralized-decentralized trading mechanism[J]. Electric power automation equipment, 2022, 42(5): 175-182.
[13] 朱兰, 王吉, 唐陇军, 等. 计及电转气精细化模型的综合能源系统鲁棒随机优化调度[J]. 电网技术, 2019, 43(1): 116-126.
ZHU L, WANG J, TANG L J, et al.Robust stochastic optimal dispatching of integrated energy systems considering refined power-to-gas model[J]. Power system technology, 2019, 43(1): 116-126.
[14] SIQIN Z Y, NIU D X, LI M Y, et al.Distributionally robust dispatching of multi-community integrated energy system considering energy sharing and profit allocation[J]. Applied energy, 2022, 321: 119202.
[15] 税月, 刘俊勇, 高红均, 等. 考虑风电不确定性的电热综合系统分布鲁棒协调优化调度模型[J]. 中国电机工程学报, 2018, 38(24): 7235-7247, 7450.
SHUI Y, LIU J Y, GAO H J, et al.A distributionally robust coordinated dispatch model for integrated electricity and heating systems considering uncertainty of wind power[J]. Proceedings of the CSEE, 2018, 38(24):7235-7247, 7450.
[16] DOAN H T, CHO J, KIM D.Peer-to-peer energy trading in smart grid through blockchain: a double auction-based game theoretic approach[J]. IEEE access, 2021, 9: 49206-49218.
[17] WANG X J, LI B K, WANG Y W, et al.A bargaining game-based profit allocation method for the wind-hydrogen-storage combined system[J]. Applied energy, 2022, 310: 118472.
[18] WANG X J,ZHANG H R, LU H, et al.Decentralized coordinated operation model of VPP and P2H systems based on stochastic-bargaining game considering multiple uncertainties and carbon cost[J]. Applied energy, 2022, 312: 118750.
[19] 麻秀范, 余思雨, 朱思嘉, 等. 基于多因素改进Shapley的虚拟电厂利润分配[J]. 电工技术学报, 2020, 35(增刊2):585-595.
MA X F, YU S Y, ZHU S J, et al.Profit allocation to virtual power plant members based on improved multifactor shapley value method[J]. Transactions of China Electrotechnical Society, 2020, 35(S2): 585-595.
[20] 吴锦领, 楼平, 管敏渊, 等. 基于非对称纳什谈判的多微网电能共享运行优化策略[J]. 电网技术, 2022, 46(7): 2711-2723.
WU J L, LOU P, GUAN M Y, et al.Operation optimization strategy of multi-microgrids energy sharing based on asymmetric nash bargaining[J]. Power system technology, 2022, 46(7): 2711-2723.
[21] 李虹, 林兰心, 赵小军. 基于需求侧用户响应分析的电-气-热综合能源系统低碳经济调度[J]. 太阳能学报, 2023, 44(5): 97-105.
LI H, LIN L X, ZHAO X J, Low carbon economic scheduling of electricity-gas-heat integrated energy system based on demand-side user response analysis[J]. Acta energiae solaris sinica, 2023, 44(5): 97-105.
[22] 刘蓉晖, 李阳, 杨秀, 等. 考虑需求响应的社区综合能源系统两阶段优化调度[J]. 太阳能学报, 2021, 42(9): 46-54.
LIU R H, LI Y, YANG X, et al.Two-stage optimal scheduling of community integrated energy system considering demand response[J]. Acta energiae solaris sinica, 2021, 42(9): 46-54.
[23] DING T, YANG Q R, YANG Y H, et al.A data-driven stochastic reactive power optimization considering uncertainties in active distribution networks and decomposition method[J]. IEEE transactions on smart grid, 2018, 9(5): 4994-5004.
PDF(1403 KB)

Accesses

Citation

Detail

Sections
Recommended

/