RESEARCH ON HIERARCHICAL SCHEDULING STRATEGY OF USER SIDE FLEXIBLE ENERGY USE BASED ON DEMAND RESPONSE

Yu Shui, Huang Xiaoling, Han Fuhong, Zhang Yue

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (10) : 134-143.

PDF(3369 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(3369 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (10) : 134-143. DOI: 10.19912/j.0254-0096.tynxb.2023-0883

RESEARCH ON HIERARCHICAL SCHEDULING STRATEGY OF USER SIDE FLEXIBLE ENERGY USE BASED ON DEMAND RESPONSE

  • Yu Shui1, Huang Xiaoling1, Han Fuhong1, Zhang Yue2
Author information +
History +

Abstract

Enhancing grid stability and supply-demand balance through demand response programs and flexible dispatch of building energy use. The energy-use scheduling strategy is designed based on the photovoltaic (PV) power generation, energy storage equipment, and ground source heat pump (GSHP) system of a small office building. Two parameters are introduced to quantify the potential of flexible energy use in the building, and a building energy-use management module is developed based on the three prioritized principles of maximizing the PV utilization, prioritizing the user's immediate needs, and storing energy at the time of low electricity price. The module is applied in TRNSYS to build a case 3 with a useful energy scheduling strategy in comparison with two reference cases. The results show that the system operating costs are reduced by 65.4% and 56.7%, respectively, within one heating season; the average value of COP for the operation of the ground source heat pump unit is increased from 3.97 to 4.22; and the average daily load transfer rate of the building is as high as 51.38%. Under the market mechanism of peak and valley tariffs, it is of great significance to tap the potential of flexible energy use in buildings, incentivize users to adopt demand response programs and improve grid stability.

Key words

renewable energy / demand response / electric load dispatching / energy storage / flexible energy use

Cite this article

Download Citations
Yu Shui, Huang Xiaoling, Han Fuhong, Zhang Yue. RESEARCH ON HIERARCHICAL SCHEDULING STRATEGY OF USER SIDE FLEXIBLE ENERGY USE BASED ON DEMAND RESPONSE[J]. Acta Energiae Solaris Sinica. 2024, 45(10): 134-143 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0883

References

[1] 胡鞍钢. 中国实现2030年前碳达峰目标及主要途径[J]. 北京工业大学学报(社会科学版), 2021, 21(3): 1-15.
HU A G.China’s goal of achieving carbon peak by 2030 and its main approaches[J]. Journal of Beijing University of Technology (social sciences edition), 2021, 21(3): 1-15.
[2] 彭生江, 陆军, 张中丹, 等. 光伏接入对电网的影响研究[J]. 电力系统保护与控制, 2021, 49(5): 157-164.
PENG S J, LU J, ZHANG Z D, et al.Research on the influence of photovoltaic access on a power grid[J]. Power system protection and control, 2021, 49(5): 157-164.
[3] 白凡, 王宝华. 光伏并网对低频振荡的影响与抑制[J]. 太阳能学报, 2020, 41(3): 255-261.
BAI F, WANG B H.Influence and suppression of grid-connected solar power plants on low frequency oscillation[J]. Acta energiae solaris sinica, 2020, 41(3): 255-261.
[4] 宁宁, 李琦芬, 杨涌文, 等. 基于综合需求侧响应的多能存储系统优化配置[J]. 科学技术与工程, 2021, 21(15): 6322-6329.
NING N, LI Q F, YANG Y W, et al.Optimal configuration of multi-energy storage system based on comprehensive demand side response[J]. Science technology and engineering, 2021, 21(15): 6322-6329.
[5] JENSEN S Ø, MARSZAL-POMIANOWSKA A, LOLLINI R, et al.IEA EBC annex 67 energy flexible buildings[J]. Energy and buildings, 2017, 155: 25-34.
[6] 孟贤, 郭启蒙, 李颖欢, 等. 考虑双向需求的混合储能容量多目标优化配置[J]. 太阳能学报, 2023, 44(8): 45-53.
MENG X, GUO Q M, LI Y H, et al.Multi-objective optimal configuration of hybrid energy storage capacity considering two-way demand[J]. Acta energiae solaris sinica, 2023, 44(8): 45-53.
[7] ASADINEJAD A, TOMSOVIC K .Optimal use of incentive and price based demand response to reduce costs and price volatility[J]. Electric power systems research, 2017, 144: 215-223.
[8] LI H, WANG Z, HONG T Z, et al.Energy flexibility of residential buildings: a systematic review of characterization and quantification methods and applications[J]. Advances in applied energy, 2021, 3: 100054.
[9] 李洋, 孟庆龙, 王钰翔, 等. 分时电价下蓄冷空调系统需求响应强化学习控制[J]. 建筑科学, 2022, 38(6): 178-187, 196.
LI Y, MENG Q L, WANG Y X, et al.Demand response reinforcement learning control of thermal energy storage air-conditioning system under time-of-use pricing[J]. Building science, 2022, 38(6): 178-187, 196.
[10] 董海鹰, 贠韫韵, 汪宁渤, 等. 基于双重电价的电动汽车充放电两阶段优化调度策略[J]. 太阳能学报, 2021, 42(4): 115-124.
DONG H Y, YUN Y Y, WANG N B, et al.Two-stage dispatch optimization strategy for charging and discharging of electric vehicles based on double electricity price[J]. Acta energiae solaris sinica, 2021, 42(4): 115-124.
[11] 朱晔, 兰贞波, 隗震, 等. 考虑碳排放成本的风光储多能互补系统优化运行研究[J]. 电力系统保护与控制, 2019, 47(10): 127-133.
ZHU Y, LAN Z B, WEI Z, et al.Research on optimal operation of wind-PV-ES complementary system considering carbon emission cost[J]. Power system protection and control, 2019, 47(10): 127-133.
[12] TOURETZKY C R, BALDEA M.A hierarchical scheduling and control strategy for thermal energy storage systems[J]. Energy and buildings, 2016, 110: 94-107.
[13] 肖白, 王转转. 含热泵储能的独立微网电源容量优化配置方法[J]. 电力系统自动化, 2022, 46(11): 37-46.
XIAO B, WANG Z Z.Optimal configuration method of generation capacity for stand-alone microgrid with pumped heat energy storage[J]. Automation of electric power systems, 2022, 46(11): 37-46.
[14] 王守相, 张善涛, 王凯, 等. 计及分时电价下用户需求响应的分布式储能多目标优化运行[J]. 电力自动化设备, 2020, 40(1): 125-132.
WANG S X, ZHANG S T, WANG K, et al.Multi-objective optimal operation of distributed energy storage considering user demand response under time-of-use price[J]. Electric power automation equipment, 2020,40(1): 125-132.
[15] 王建波, 王春亮, 魏强, 等. 用户侧储能参与需求响应的多时间尺度优化调度策略研究[J]. 电气工程学报, 2021, 16(3): 115-122.
WANG J B, WANG C L, WEI Q, et al.Research on multiple time scales optimal dispatching strategy for user side energy storage participating in demand response[J]. Journal of electrical engineering, 2021, 16(3): 115-122.
[16] FELDHOFER M, HEALY W M.Improving the energy flexibility of single-family homes through adjustments to envelope and heat pump parameters[J]. Journal of building engineering, 2021, 39: 102245.
[17] 万玉良, 尚国政, 刘蒙聪, 等. 考虑源荷不确定性的分时电价动态修正机制研究[J]. 太阳能学报, 2022, 43(11): 493-500.
WAN Y L, SHANG G Z, LIU M C, et al.Research on dynamic correction mechanism of time-of-use electricity price considering uncertainty of source and load[J]. Acta energiae solaris sinica, 2022, 43(11): 493-500.
[18] 刘艳峰, 王亚星, 罗西, 等. 基于动态运行策略的太阳能分布式供能系统设计运行联合优化[J]. 太阳能学报, 2022, 43(5): 244-251.
LIU Y F, WANG Y X, LUO X, et al.Design and operation optimization of solar distributed energy supply system based on dynamic operation strategy[J]. Acta energiae solaris sinica, 2022, 43(5): 244-251.
[19] 杨少刚. 基于TRNSYS地埋管地源热泵变流量系统仿真研究[D].济南: 山东建筑大学, 2016.
YANG S G.The simulation study of ground-source heat pump variable flow rate system based on TRNSYS[D]. Jinan: Shandong Jianzhu University, 2016.
[20] AMAYRI M, SANTOS SILVA C, POMBEIRO H, et al.Flexibility characterization of residential electricity consumption: a machine learning approach[J]. Sustainable energy, grids and networks, 2022, 32: 100801.
[21] REYNDERS G, DIRIKEN J, SAELENS D.Generic characterization method for energy flexibility: applied to structural thermal storage in residential buildings[J]. Applied energy, 2017, 198: 192-202.
PDF(3369 KB)

Accesses

Citation

Detail

Sections
Recommended

/